Acta Scientific Nutritional Health (ASNH)(ISSN: 2582-1423)

Research Article Volume 6 Issue 9

Green Roofs: Influence of Moisture Content of the Substrate in the Thermal Regulation of a Building in CABA - Argentina

Héctor Gustavo Rosatto1*, María Agustina Waslavsky Lattuada1, María José Leveratto2, Daniel Andrés Laureda1, Martha Bargiela1 and Guido Fernando Botta3

1University of Buenos Aires, School of Agriculture, Agricultural Engineering and Land Use Department, Buenos Aires City, Argentina

2University of Buenos Aires, Habitat and Energy Research Centre, School of Architecture, Design and Urbanism, Intendente Güiraldes, Buenos Aires City, Argentina

3National University of Luján, Technology Department, Buenos Aires Province, Argentina

*Corresponding Author: Héctor Gustavo Rosatto, University of Buenos Aires, School of Agriculture, Agricultural Engineering and Land Use Department, Buenos Aires City, Argentina.

Received: July 04, 2022; Published: August 19, 2022

Abstract

Urbanization is defined as the physical growth of urban areas. About half of the world's population now lives in cities and expected that this amount will increase to 61% by 2030; this growth will be more pronounced in developing countries. Cities are the habitat for excellence of human, and present environmental characteristics (urban climate) common in many parts of the world, as for example the presence of the island of urban heat (ICU). The urban heat island reveals the impact of habitat built on the physical environment and the increase in temperature that produces. Climatic change effects and the processes of urban growth caused environmental deterioration in the city of Buenos Aires. The increase of the temperature according to the models established by the Intergovernmental Panel on climate change could emphasize over the next decades. For Buenos Aires the models predict, specifically in the 2020-2029 period, an increase of average maximum temperatures in 0.6°C to 2° C (for the minimum temperature average). One of the proposed solutions is the green roof, which, mainly can help as buffer against temperature extremes and the urban heat island. The objective of the present study was to determine, for the climatic conditions of the Autonomous city of Buenos Aires (CABA), if the moisture content of the substrate of green roof due to rains, has influence on the thermal regulation. The results obtained allow us to conclude that for the conditions of the study site and in the analyzed months, the Vegetated Roof (CV) allows a regulation of the temperature inside the building (on average) of around 2 degrees Celsius. However, statistically significant differences could not be verified on days with rain.

 

Keywords: Heat Island; Vegetated Roofs; Thermal Regulation

References

  1. Villalba GA., et al. “Techos Verdes. Contribución del Carpobrotus Acinaciformis al Manejo Integrado de Escurrimientos Superficiales Urbanos”. Revista de la Facultad de Ciencias Agrarias Argentina 2 (2017): 169-181.
  2. Evans JMY and de Schiller S. “La Isla de Calor en ciudades con clima calido-humedo el caso de Tampico, Mexico”. Revista: Avances en Energías Renovables 9 (2005): 37-42.
  3. Sarricolea P., et al. “Análisis de la máxima intensidad de la isla de calor urbana nocturna de la ciudad de Rancagua (Chile) y sus factores explicativos”. Revista de Climatología 8 (2008): 71-84.
  4. García Vásquez W., et al. “Islas de Calor Urbano: Efecto del Crecimiento no Planificado del Área Urbana de la Ciudad de Jaén, Cajamarca (1995-2015). Tesis de la Universidad Nacional de Jaén”. Facultad de Ingeniería Forestal y Ambiental 73 (2020).
  5. Equere V., et al. “Definition of-new morphological parameter to improve prediction of urban heat island”. Sustainable Cities and Society 56 (2020): 102021.
  6. Nuruzzaman Md. “Urban Heat Island: Causes, Effects and Mitigation Measures Review”. International Journal of Environmental Monitoring and Analysis2 (2015): 67-73.
  7. Ordóñez E., et al. “La Escuela Verde: Tecnologías para la Sustentabilidad Energética". XII Seminario de Investigación - Facultad de Ingeniería, Universidad Autónoma de Yucatán, México (2010).
  8. Guía del Estandar Passivhaus. “Edificios de consumo energético casi nulo”. Fundación de la Energía de la Comunidad de M-d r id (2011).
  9. “Energy, transport and environment indicators 2010 edition”. Luxembourg: Publications Office of the EU (2011).
  10. Arabi R., et al. “Mitigating urban heat island through green roofs”. Current World Environment1 (2015): 918-927.
  11. Battista G., et al. “How cool pavements and green roof affect building energy performances”. Heat Transfer Engineering (2021): 1-15.
  12. Rahim S., et al. “State-of-the-Art Review on Green Roof Implementation”. In Proceedings of the International Conference on Civil, Offshore and Environmental Engineering (2021): 1035-1043.
  13. Bortolini L., et al. “Hydrological Behaviour of Extensive Green Roofs with Native Plants in the Humid Subtropical Climate Context”. Water1 (2021): 44.
  14. Mutani G and Todeschi V. “The effects of green roofs on outdoor thermal comfort, urban heat island mitigation and energy savings”. Atmosphere 2 (2020): 123.
  15. Tiwari A., et al. “The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation”. Environmental Pollution (2020): 115898.
  16. Sanchez L and Reames TG. “Cooling Detroit: socio-spatial analysis of equity in green roofs as an urban heat island mitigation strategy”. Urban Forestry and Urban Greening 44 (2019): 126331.
  17. Jim CY. “Assessing climate-adaptation effect of extensive tropical green roofs in cities”. Landscape and Urban Planning 138 (2015): 54-70.
  18. Maldonado Cortés D. “Efectividad de los Sistemas de Techos con Cubierta Vegetal para la Mitigación del Calentamiento y Manejo de la Escorrentía en las Zonas Urbanas. Tesis de Maestría en Ciencias en Gerencia Ambiental en Evaluación y Manejo de Riesgo Ambiental de la Universidad Metropolitana - Escuela Graduada de Asuntos Ambientales”. San Juan, Puerto Rico 105 (2009).
  19. Goussous Jawdat., et al. “Prospects of green roof technology for energy and thermal benefits in buildings: Case of Jordan”. Sustainable Cities and Society 14 (2015): 425-440.
  20. Van Hooffa T., et al. “Reprint of: On the predicted effectiveness of climate adaptation measures for residential buildings”. Building and Environment 83 (2015): 142-1580.
  21. Voskamp IM and FHM Van de Ven. “Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events”. Building and Environment 83 (2015): 159-167.
  22. Lee Ju Young., et al. “Pilot study to evaluate runoff quantity from green roofs”. Journal of Environmental Management 152 (2015): 171-176.
  23. Sultana N., et al. “Quality assessment of harvested rainwater from green roofs under tropical climate”. Desalination and Water Treatment (2015): 1-8.
  24. Hashemi Sajedeh Sadat Ghazizadeh., et al. “Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: -review”. Renewable and Sustainable Energy Reviews 52 (2015): 669-679.
  25. Yang X and Hodler T. “Visual and statistical comparisons of surface modeling techniques for point-based environmental data”. Cartography and Geographic Information Science2 (2000): 165-176.
  26. Gagliano A., et al. “Multi-criteria methodology for comparing the energy and environmental behavior of cool, green and traditional roofs”. Building and Environment 90 (2015): 71-81.
  27. Carson TB., et al. “Hydrological performance of extensive green roofs in New York City: observations and multiyear modeling of three full-scale systems”. Environmental Research Letters13 (2013).
  28. Rosatto H., et al. “Eficiencia de la retención hídrica de las cubiertas vegetadas”. Revista de la Facultad de Ciencias Agrarias Argentina 1 (2010): 213-219.
  29. Rosatto H., et al. “Eficiencia en la retención del agua de lluvia de Cubiertas Vegetadas de tipo “Extensivo” e “Intensivo”. Revista de la Facultad de Ciencias Agrarias Argentina 1 (2013): 169-183.
  30. Rosatto H., et al. “Cubiertas Vegetadas de tipo “Extensivo” - Eficiencia en la retención del agua de lluvia de distinto tipo de Vegetación Implantada”. Revista de la Facultad de Ciencias Agrarias Argentina 2 (2015): 123-134.
  31. Leveratto MJ., et al. “Cubiertas verdes como herramienta para la mitigación de isla de calor en áreas urbanas de la Ciudad de Buenos Aires”. Actas Congreso Solar Cities (2014): 127-137.
  32. Rosatto H., et al. “Problemáticas del Cambio Climático en la Ciudad Autónoma de Buenos Aires - Aportes de las Cubiertas Vegetadas en la Regulación Térmica”. Revista de la Facultad de Ciencias Agrarias Argentina 1 (2016): 197-209.
  33. Barrio EPD. “Analysis of the green roofs cooling potential in buildings”. Energy and Buildings2 (1998): 179-193.
  34. Castleton HF., et al. “Green roofs: building energy savings and the potential for retrofit”. Energy and Buildings10 (2010): 1582-1591.
  35. Marchena Ávila DC. “Techos verdes como sistemas urbanos de drenaje sostenible. Trabajo de Grado Ingeniería”. Pontificia Univ (2012): 82.
  36. Vanwalleghem T., et al. “Análisis de la escorrentía, la percolación y la evaporación en techos verdes usando áridos reciclados como sustrato. IV Jornadas de Ingeniería del Agua - La precipitación y los procesos erosivos”. Córdoba (2015): 10.
  37. Rivera de la Rosa C. “Cubiertas vegetales en la región del Caribe. Caso de estudio: República Dominicana”. Projecte Final de Màster Oficial, Universidad Politécnica de Cataluña - Escuela Politécnica Superior De Edificación De Barcelona (2015): 96.
  38. Feliz Santana K. “Estudio de factibilidad de la implantación de techos verdes en un clima tropical como el de la República Dominicana”. Trabajo de fin de Máster, Universidad Politécnica de Cataluña - Escuela Politécnica Superior De Edificación De Barcelona (2016): 113.
  39. Li Z. “Effects of check points on the reliability of DTM accuracy estimates obtained from experimental tests”. Phtogrametric Engineering and Remote Sensing10 (1991): 1333-1340.
  40. United States Geological Survey (USGS). “Standards for Digital Elevation Models”. National Mapping Program - EEUU (1998): 410.
  41. Yang Wen-Yu., et al. “Saturation-excess and infiltration-excess runoff on green roofs”. Ecological Engineering 74 (2015): 327-336.

Citation

Citation: Héctor Gustavo Rosatto., et al. “Green Roofs: Influence of Moisture Content of the Substrate in the Thermal Regulation of a Building in CABA - Argentina". Acta Scientific Nutritional Health 6.9 (2022): 55-66.

Copyright

Copyright: © 2022 Héctor Gustavo Rosatto., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




Metrics

Acceptance rate30%
Acceptance to publication20-30 days
Impact Factor1.316

Indexed In





News and Events


  • Certification for Review
    Acta Scientific certifies the Editors/reviewers for their review done towards the assigned articles of the respective journals.
  • Submission Timeline for Upcoming Issue
    The last date for submission of articles for regular Issues is April 30th, 2024.
  • Publication Certificate
    Authors will be issued a "Publication Certificate" as a mark of appreciation for publishing their work.
  • Best Article of the Issue
    The Editors will elect one Best Article after each issue release. The authors of this article will be provided with a certificate of "Best Article of the Issue".
  • Welcoming Article Submission
    Acta Scientific delightfully welcomes active researchers for submission of articles towards the upcoming issue of respective journals.

Contact US