Study of the Antimycobacterial and Anti-Biofilm Activity of the Essential Oils of Duguetia confinis [Engl & Diels (Chatrou)] and of Vetiveria zizanioides (L.)
Francky Love Avoulou1,4,5, Marie Grace Clarisse Edzimbi1,3, Esther Del Florence Moni Ndedi1,3, Blandine Pulchérie Tamatcho Kweyang1*, Aristide Nguele Toussaint4, Augustine Asakizi Nji5, Jean Paul Assam Assam1,3* and Veronique Penlap Beng2,3
1Department of Microbiology, Faculty of Sciences, University of Yaoundé 1, BP 812, Cameroon
2Department of Biochemistry, Faculty of Sciences, University of Yaoundé 1, Cameroon
3Tuberculosis and Pharmacology Research Laboratory, Nkolbisson Biotechnology Centre, Yaoundé, Cameroon
4Department of Biomedical Science, Adventist University Cosendai, Nanga-Eboko, Cameroon
5Kesmonds International University, Cameroon
*Corresponding Author: Blandine Pulchérie Tamatcho Kweyang, Department of Microbiology, Faculty of Sciences, University of Yaoundé 1, BP 812, Cameroon and Jean Paul Assam Assam, Department of Microbiology, Faculty of Sciences, University of Yaoundé 1, BP 812, Cameroon.
Received:
October 21, 2025; Published: November 07, 2025
Abstract
The aim of this study was to evaluate the antimycobacterial and antibiofilm potential of the essential oils of the bark Duguetia confinis [(Engl & Diels) Chatrou] and the rhizomes Vetiveria zizanioides (L). The essential oils were extracted by hydrodistillation and tested on the strains of mycobacteria, namely Mycobacterium tuberculosis H37Rv with ATCC (American Type Cells Cultures) code 2794 and a clinical isolate. The technique used for antimycobacterial tests is that of microdilution in liquid media for the determination of MIC and CMB inhibition parameters on planktonic cells. Then, the biofilm was induced by liquid culture on a polystyrene support. Finally, the biofilm inhibition parameters were determined in liquid media (CMIB and CMEB) and a comparison of the activity of planktonic cell inhibition parameters and biofilm inhibition parameters was made. The essential oils were obtained with a yield of 0.03% for Duguetia confinis and 0.26% for Vetiveria zizanioides. The minimum inhibitory concentrations (MIC) were 156.25 μg/mL for V. zizanioides on both the reference strain and clinical isolate, and 1250 μg/mL for D. confinis on both, showing bactericidal activity. The activity of the recorded biofilm inhibition parameters shows that Both D. confinis and V. zizanioides showed notable biofilm inhibition, with D. confinis at 156.25 μg/mL on the clinical isolate with a MIBC of 156.25 μg/mL on the clinical isolate. The activity of these EOs confirms the use of these plants for the treatment of respiratory tract diseases in traditional medicine and the results of the activity of D. confinis provide data missing in the literature review. These results show the potential antimycobacterial of the EOs tested and what could be a promising alternative solution for the treatment of tuberculosis.
Keywords: Vetiveria zizanioides; Duguetia confinis; Essential Oils; Antimycobacterial Activity; Anti Biofilm Activity
References
- Edward A Nardell. “Infections mycobactériennes non tuberculeuses”. MSD. msdmanuals.com. (2022). Consulté le 23 Septembre (2022).
- “Tuberculose” (2023).
- Assam Assam Jean Paul. “Etude de la résistance et de la diversité génomique dans le cas de la tuberculose pulmonaire au Cameroun : Région du centre, Ouest, Sud, et Est". [Thèse de Doctorat]. UNIVERSITE DE YAOUNDE I (2012).
- “Rapport sur la tuberculose dans le monde 2021”. (2022).
- Stewart PS and Costerton JW. “Antibiotic resistance of bacteria in biofilms”. The Lancet9276 (2001): 135-138.
- Jaime Esteba et Marta García-Coca. “Mycobacterium Biofilms”. Frontiers in Microbiology8 (2018): 2651.
- HALL-STOODLEY Luanne and STOODLEY Paul. “Concepts évolutifs dans les infections par biofilm”. Cent Sci Génomiques7 (2009): 1034 43.
- Kulka K., et al. “Growth of Mycobacterium tuberculosis biofilms”. Journal of Visualized Experiments 15 (2012): e3820.
- Basaraba RJ and Ojha AK. “Mycobacterial biofilms: revisiting tuberculosis bacilli in extracellular necrotizing lesions”. Microbiology Spectrum 5 (2017): TBTB2-0024-2016.
- Ojha Anil K., et al. “Croissance de biofilms de Mycobacterium tuberculosis contenant des acides mycoliques libres et abritant des bactéries tolérantes aux medicaments”. Microbiologie moléculaire1 (2008): 164 174.
- Islam M S., et al. “Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms”. Expert Review of Anti-infective Therapy 10 (2012): 1055-1066.
- Etienne O. “Développement d’interfaces a propriétés antimicrobiennes par la fonctionnalisation de multicouches de polylectrolytes. [Thèse de doctorat]”. UNIVERSITE LOUIS PASTEUR STRASBOURG D’ODONTOLOGIE (2004): 169.
- Limonier Anne-Sophie. “La phytothérapie de demain : Les plantes médicinales au cœur de la pharmacie [Thèse de Doctorat]”. FACULTE DE PHARMACIE DE MARSEILLE (2018): 92.
- Paparoupa M and Gillissen A. “Is Myrtol® Standardized a New Alternative toward Antibiotics?” Pharmacognosy Review20 (2016): 143-146.
- Dwivedi GR., et al. “Tricyclic Sesquiterpenes from Vetiveria zizanoides (L.) Nash as Antimycobacterial Agents”. Chemical and Biology Drug Design 82 (2013): 587-594.
- Ghedira K and Goetz P. “Vétiver: Vetiveria zizanioides (L.) Nash (Poaceae)”. Phytothérapie 2 (2015): 98.
- Miora Ralambondrainy. “Caractérisation chimique et biologique de trois huiles essentielles répulsives issues de la biodiversité régionale contre l’alphavirus du Ross River [Thèse de doctorat]”. UNIVERSITE DE LA REUNION (2017): 139.
- Oliveira Thaís AS., et al. “Activités antibactériennes, antiparasitaires et cytotoxiques de l'huile essentielle chimiquement caractérisée des racines de Chrysopogon zizanioides”. Produits Pharmaceutiques8 (2022): 967.
- Saikia D., et al. “Antituberculosis activity of Indian grass KHUS (Vetiveria zizanioides L. Nash)”. Complementary Therapies in Medicine6 (2012): 434-436.
- Saroosh Zahoor., et al. “Review of Pharmacological Activities of Vetiveria zizanioides (Linn) Nash”. Article in Journal of Basic and Applied Sciences14 (2018): 235-238.
- Shikha Gupta., et al. “Activité antimycobactérienne des fractions et des composés isolés de Vetiveria zizanioides”. Recherche En Chimie Médicinale9 (2012): 1283-1289.
- AFNOR (Association Française de la Norme). “Huiles essentielles, Echantillonnage”. Normes internationales NF ISO 2212 du 20 mai NFT 75 A. (2007).
- CLSI (Clinical and Laboratory Standards Institute). “Susceptibility testing of Mycobacteria, Nocardiae and other aerobic actinomycetes”. Approved-second edition M24-A2, Wayn; (2011).
- Nyegue M. “Propriétés chimiques et biologiques des huiles essentielles de quelques plantes aromatiques et/ ou médicinales du Cameroun : évaluation de leurs activités antiradicalaires, anti-inflammatoires et antimicrobiennes. [Thèse de doctorat]”. UNIVERSITY MONTPELLIER II France (2006): 193.
- Nostro A., et al. “Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms”. Journal of Medical Microbiology4 (2007): 519-523.
- Boukhari Tassadit and Habarek Tinhinane. “Evaluation de l’inhibition de biofilm des bactéries du lait de vache cru par les huiles essentielles de Thymus algeriensis [Mémoire]”. UNIVERSITE MOULOUD MAMMERI DE TIZI-OUZOU (2019): 50.
- TREMBLAY Yannick DN., et al. “Les biofilms bactériens : leur importance en santé animale et en santé publique”. Revue Canadienne de Recherche2 (2014): 110.
- Aligiannis N., et al. “Composition and anti-microbial activity of the essential oils of two Origanum species”. Journal of Agricultural and Food Chemistry 40 (2001): 4168-4170.
- Ratnakar P and Murthy S. “Preliminary studies on the antitubercular activity and the mechanism of action of the water extract of garlic (Allium sativum) and its two partially purified proteins (garlic defensis)”. Indian Journal of Clinical Biochemistry1 (1996): 37-41.
- Dos Santos Albert C., et al. “Essential Oils of Duguetia Species A. St. Hill (Annonaceae): Chemical Diversity and Pharmacological Potential”. Biomolecule615 (2022): 14.
- Bueno J. “Antitubercular in vitro drug discovery: tools for begin the search, understanding tuberculosis - New approaches to fighting against drug resistance”. Dr. Pere-Joan Cardona (Ed.) (2012): 1-23.
- Sieniawska E., et al. “Morphological Changes in the Overall Mycobacterium tuberculosis H37Ra Cell Shape Cytoplasm Homogeneity due to Mutellina purpurea L. Essential Oil and Its Main Constituents”. Medical Principles and Practice 24 (2015): 527-532.
- Trombetta D., et al. “Mécanismes d'action antibactérienne de trois monoterpènes”. Agents Antimicrobiens Chemotherapy6 (2005): 2474-2478.
- Sikkema J., et al. “Mécanismes de toxicité membranaire des hydrocarbures”. Microbiology Réview 59 (1995): 201-222.
- Almeida JRGS., et al. “Composition and antimicrobial activity of the leaf essential oils of Duguetia gardneriana Mart. and Duguetia moricandiana Mart. (Annonaceae)”. Journal of Essential Oil Research3 (2010): 275-278.
- Andrade-Ochoa S., et al. “Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis”. BMC Complementary Medicine and Therapies 15 (2015): 332.
- RANDALL J BASARABA and ANIL K OJHA. “Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions”. Microbiology Spectra3 (2017): 7
- Khan MSA., et al. “Inhibition des fonctions bactériennes régulées par quorum sensing par les huiles essentielles végétales avec une référence particulière à l'huile de clou de girofle”. Letters on Applied Microbiology 49 (2009): 354-360.
- Abdelhakim Bouyahya., et al. “Mécanismes, actions anti-quorum-sensing et essais cliniques de composés bioactifs de plantes médicinales contre les bactéries : une revue complete”. Molécules 5 (2022): 1484.
- Ojha A., et al. “GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria”. Cell 123 (2005): 861-873.
- TANG Cailin., et al. “Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus”. International Journal of Medical Microbiology 5 (2020): 151-435.
- POLI Jean-Pierre. “Recherche des mécanismes d’action des molécules à activité biologique issues des produits naturels [Sciences agricoles]”. [CORSE]: UNIVERSITE DE CORSE-PASCAL PAOLI; (2018).
Citation
Copyright