

Analytical Techniques for the Assay of Gadobutrol: A Review

Mukthinuthalapati Mathrusri Annapurna* and Sabbarapu Madhuri

GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, India

***Corresponding Author:** Mukthinuthalapati Mathrusri Annapurna, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, India.

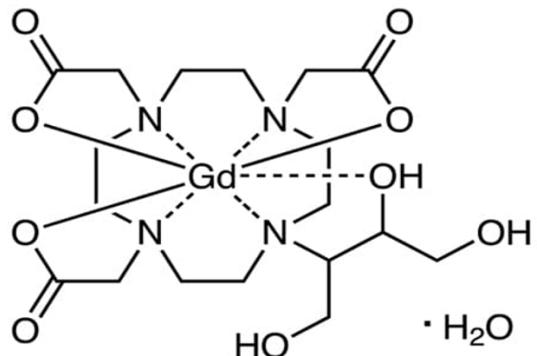
DOI: 10.31080/ASPS.2025.10.1248

Received: November 28, 2025

Published: December 30, 2025

© All rights are reserved by

**Mukthinuthalapati Mathrusri
Annapurna and Sabbarapu Madhuri**


Abstract

Gadobutrol is a Gadolinium-based contrast agent. Gadolinium-based MRI contrast agents have been widely used in clinical medicine for more than 30 years are all small molecule agents that distribute into all extracellular spaces in tissues without providing any specific biological information. In the present study the authors have summarised the analytical methods so far published for the estimation of Gadobutrol in the literature.

Keywords: Gadobutrol; MRI

Introduction

Gadobutrol (CAS no. 138071-82-6) is a second-generation extracellular non-ionic macrocyclic Gadolinium-based contrast agent used in magnetic resonance imaging in adults and children older than 2 years of age [1,2]. Chemically, it is Gadolinium (III) 2,2',2''-(10-((2R,3S)-1,3,4-trihydroxybutan-2-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetate. with molecular formula $C_{18}H_{31}GdN_4O_9$ and molecular weight 604.7 grams/mole. Gadobutrol (Figure 1) is used in magnetic resonance imaging (MRI) and magnetic resonance angiography to enhance image quality and help visualize abnormal tissues and blood flow. Gadolinium-based MRI contrast agents are used in clinical medicine.

Figure 1: Structure of Gadobutrol ($C_{18}H_{31}GdN_4O_9$).

Ramya., *et al.* have developed RP-UPLC method [3] using a mixture of Ammonium acetate buffer and Acetonitrile (85:15) as mobile phase. Sanni Babu et al have developed two HPLC methods for the quantification of Trometamol content in Gadobutrol samples

using refractive index detector [4] and also for the evaluation of Gadobutrol and its impurities [5] and the methods were summarized in Table 1.

Table 1: Review of analytical methods.

Reagent/Mobile phase	Wavelength (nm)	Linearity (µg/ml)	Method	Reference
Ammonium acetate buffer: Acetonitrile (85:15)	195		RP-UPLC	[3]
Phosphate buffer: Cyano methane (99:1)	-		RP-HPLC (Refractive index detector)	[4]
Formic acid (pH 3.6): Acetonitrile	-	0.8314 – 30.21	RP-HPLC (Impurities)	[5]

Conclusion

This review article explains different analytical methods developed for the estimation of Gadobutrol in pharmaceutical dosage forms.

Bibliography

1. Kelcie Foshag., *et al.* "A review of gadolinium-based contrast agents in the setting of repeated MRI for high-risk breast cancer screening". *Clinical Imaging* 120 (2025): 110420.
2. Małgorzata Kloc., *et al.* "Gadolinium-based MRI contrast agent effects on calcium signaling and actin-dependent cell functions". *Magnetic Medicine* 1.1 (2025): 100004.
3. Ramya Sudha P., *et al.* "Stability indicating UPLC method for quantitative estimation of Gadobutrol in Gadobutrol solution for intravenous administration". *Journal of Chemical Health Risks* 13.6 (2023): 97-106.
4. Sanni Babu N and Hari Babu B. "Estimation of Trometamol content in Gadobutrol solution for intravenous administration by using RP-LC with refractive index detector". *Research Journal of Pharmacy and Technology* 15.12 (2022): 5597-5602.
5. Sanni Babu Najana., *et al.* "On the stability indicating reverse phase high-performance liquid chromatography method for quantitative estimation of impurities in Gadobutrol solution for intravenous administration". *Biosciences Biotechnology Research Communications* 15.3 (2022).