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Highlights 

This paper proposes that there maybe five independent pathways for infections to develop; Transformation from organic matter, 
a non-living protein multiplying in a cell, evolution of microbes, reproduction-contamination and endogenous production.

It has been demonstrated that the Christensenellaceae, a family in the phylum Firmicutes, is heritable suggesting that human cells 
and gut bacterial material are related. It has also been shown that the fetus is exposed to bacteria prior to birth -without any evidence 
that they are contaminants or acquired from the environment suggesting a possible endogenous origin of bacteria in breast milk, 
meconium, placenta, umbilical cord blood and amniotic fluid.

Malassezia yeasts are not contagious, not culturable from the environment, cannot colonize human skin by inoculation without 
occlusion and neonate skin is free of Malassezia but is colonized in the first month of life suggesting that they may be endogenous.

Human stem cells seem to be the most likely candidates to produce microbes: This is because they differentiate to epithelial cells 
and cancer cells and contain the essentials to transform to microorganisms. Evidence to suggest decomposer microbes and Pseudo-
monas aeruginosa may represent examples of microevolution of microorganisms is presented.

Future experimental studies to demonstrate the transformation of organic matter to microorganisms and also the microevolution 
of organisms consistent with the Darwinian theory are described.

•	 Transformation from organic matter, a non-living protein 
multiplying in a cell, evolution of microbes, reproduction-
contamination and endogenous production may represent 
pathways of new microorganisms.

•	 Among many pathways only the germ theory has been experi-
mentally validate.

•	 Gut microbes are shaped by human genetics and The Chris-
tensenellaceae is heritable, bacteria in amniotic fluid, meco-

nium, breast milk and tissue, placenta, umbilical cord are not 
contaminants and there is no evidence that they are acquired 
from the environment suggesting that diverse microorgan-
isms may be endogenous.

•	 Stem cells produce epithelial and cancer cells and are the most 
likely candidates to produce endogenous microbes.

•	 Decomposer microbes including Pseudomonas aeruginosa 
may evolve from less complex bacteria consistent with Dar-
win’s theory of evolution.
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Since the introduction of the germ theory, it has been accepted 
that all infections result from foreign invading microbes [1].

Of interest, the history of earth [2,3] and the theory of evolu-
tion [4] suggest there may be pathways independent of contamina-
tion for microorganisms to develop such as transformation from 
lifeless organic matter or evolution of microorganisms to more 
complex microorganisms. It has already been established that vi-
ral infections [5] and prion caused diseases [6] result from lifeless 
proteins multiplying in cells of complex multi- cellular organisms. 
In essence, our current paradigm of all infections resulting from 
contamination seems to be less than accurate. 

This paper reviews possible diverse origins of infections based 
upon scientific observations for our better understanding of di-
verse pathways of infections maybe helpful to combat infectious 
disorders. Possible diverse origins of infections will be discussed 
under five headings:

•	 Transformation from organic matter.
•	 Organic matter multiplying in a cell of a multicellular organ-

ism. 
•	 Reproduction.
•	 Transformation of human stem cells to unicellular species.
•	 Evolution of more complex unicellular organisms from less 

complex organisms.

Unicellular microorganisms from organic matter

The history of life on earth suggests, the first microorganisms 
were born from lifeless organic matter some 3.6 billion years ago 
[2,3]. Although there is some controversy over the exact timing and 
the precise identity of the first living things on earth, in general, 
the scientific consensus indicates living organisms came from non-
living organic matter. It seems reasonable to assume that the very 
processes that started life 3.6 billion years ago continue to be op-
erational now.

A lifeless protein and a cell of a multicellular organism

Yet not fully understood processes involved in the formation of 
unicellular organisms from lifeless organic matter may also be ob-
served in the emergence of infectious pathogens such as viruses 

[5] and prion associated disorders [6] whereby a lifeless protein 
-virion or prion-gains the capacity to multiply and reproduce upon 
entry into a cell of a multicellular organism. Viral infections and 
prion caused neurodegenerative disorders represent infections 
that develop by various protein particles becoming pathogens in 
human and animal cells.

Reproduction-contamination

Bacteria reproduce by cell division through binary fission. The 
germ theory experimentally validated by Louis Pasteur demon-
strated that some infections result from bacterial growth [1]. In-
deed, the germ theory has been the central paradigm of medicine 
ever since its introduction in the middle of 19th century.

Possible changes of stem cells to microorganisms

There seems to be some indirect evidence to suggest the pos-
sibility that stem cells which are multi potent and capable to dif-
ferentiate to epithelial cells and cancer may also transform to mi-
croorganisms. Although this hypotheses has not been validated by 
experimental studies, its potential validity is supported by diverse 
observations that indeed humans and some microorganisms share 
genetic links. For instance, it has been demonstrated that the Chris-
tensenellaceae, a family in the phylum Firmicutes, is heritable sug-
gesting that human genetic material [7] and gut bacterial material 
are related and human cells may generate some gut microbes. Also, 
It has been shown that Malassezia yeasts are not contagious [8,9], 
not culturable from the environment [10], cannot colonize human 
skin by inoculation without occlusion [11,12] and neonate skin is 
free of Malassezia [13] but is colonized in the first month of life 
[14] suggesting that they may be endogenous.

Furthermore, It has also been shown that the fetus is exposed to 
bacteria prior to birth -without any evidence that they are contami-
nants or acquired from the environment [15] suggesting a possible 
endogenous origin of bacteria in placenta [16], amniotic fluid [17] 
meconium [18] breast milk [19], breast tissue [20] umbilical cord 
blood [21].

In essence a plethora of observations are consistent with the 
possibility that the Christensenellaceae, Malassezia yeasts and bac-
teria in breast milk, meconium, placenta, umbilical cord blood and 
amniotic fluid are endogenous.
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The hypotheses of endogenous infections may suggest that human 
stem cells are the most likely candidates to produce microbes: This 
is because human stem cells differentiate to epithelial cells, eryth-
rocytes, lactocytes, cancer cells and have all the essentials to pro-
duce bacteria [22,23]. Also, the rate of gut epithelial cell production 
and cell loss is the same as endogenous bacterial production sug-
gesting that fallen epithelial cells may become bacteria [24]. Un-
derstandably, the endogenous infections hypotheses needs future 
experimental validation.

Microevolution of microbes

Approximately 38 trillion microbes represent the normal flora 
and are still active when a mammal dies [25]. Decomposer mi-
crobes including Pseudomonas aeruginosa play an important role 
in the process of mammalian decomposition [26-28]. In the early 
stages of decomposition, decomposer bacteria breakdown tissues 
and produce hydrogen sulfide methane putrescine, cadaverine, 
which inflate cadaver and eventually trigger the rupture of skin 
[26-28]. The pre-bloat stage is predominated by Pseudomonas, 
Streptococcus, Staphylococcus, Enterobacteriacae, Prevotella, Veil-
lonella and Actinobacteria. 

 Decomposition follows a predicted clock like sequence consis-
tent with a shift from aerobic to anaerobic and ammonium intol-
erant to ammonium tolerant microbes. suggesting that bacterial 
communities evolve and gain abilities to survive in rapidly chang-
ing environments corresponding with the stages of decomposition 
[26-28]. Predicted increases in genes related to nitrogen cycling 
and amino acid degradation including those required for the break-
down of lysine and arginine into cadaverine and putrescine have 
been noted [26-28]. Later, the decomposer microbial community 
seems to be capable to survive in ammonium rich environments 
[26-28]. 

Hyde., et al. suggested that the decomposer bacterial commu-
nity migrated out of the large intestine, skin or soil [26,27]. Metcalf 
at al. hypothesized that the microbial decomposers mainly come 
from the rich microbial biodiversity in soils [28].

Of interest, several observations argue against the hypotheses 
that soil bacteria are the predominant source of decomposers. For 
instance, there are some estimated 38 trillion microorganisms that 
reside in human body are still alive and active at the time of death 
[25].

Decomposition has been observed in pig carcasses in tightly 
wrapped plastic bags in water [29]. It has also been demonstrated 

that in sterile soil decomposition occurred [30]. In summary, host 
specific intrinsic biological processes -independent of the environ-
ment -shape the bacterial communities involved in mammalian de-
composition. This observation suggests that the most likely candi-
date of origin of decomposer microbes including Pseudomonas are 
the endogenous bacteria of the host body and not contaminants 
from the soil. Worthy of emphasis is the observation that during 
mammalian decomposition bacterial communities continue to 
change and evolve in a predicted schedule without any evidence 
that those changes correspond to input from microorganisms that 
are getting acquired from the environment. This observation also 
suggests that environmental conditions shared by a dead host may 
promote evolution of decomposing microbes including Pseudo-
monas from host microbes. Pseudomonas has larger genome size 
and greater cellular and functional complexity-more evolved- than 
common bacteria [31].

The possible evolution of complex unicellular organisms such 
as pseudomonas aeruginosa from less complex unicellular organ-
isms such as human bacterial flora lacks experimental validation 
however is supported by indirect scientific observations on burn 
wound infections and studies of decomposer species.

During mammalian decomposition host gut bacteria-and not 
contaminants from the environment- seem to be the predominant 
source of decomposers suggesting that decomposer bacteria may 
be endogenous and represent evolution of host bacteria. In es-
sence, decomposer bacteria including Pseudomonas may result 
from contamination or may evolve from host gut bacteria consis-
tent with what Charles Darwin once observed - all species have two 
possible pathways of origins, reproduction or evolution from a less 
complex organism.

Discussion
Scientific data suggest there may indeed multiple pathways of 

origin for infections to develop independent of contamination. It 
is true that among many possible pathways of infections only the 
germ theory has been experimentally validated.

 However compelling the supporting evidence, neither the birth 
of first microorganisms from organic matter nor the evolution of 
species has been experimentally demonstrated.

 Bacteria in the fetus that are not contaminants, the observa-
tion that some gut bacteria and Malassezia species are heritable 
strongly support an endogenous origin of some infections.
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If indeed some infections are endogenous and do not result 
from contamination, human stem cells are the most likely candi-
dates to produce microbes: This is because human stem cells dif-
ferentiate to epithelial cells, erythrocytes, lactocytes, cancer cells 
and have all the essentials to produce bacteria. Also, the rate of gut 
epithelial cell production and cell loss is the same as endogenous 
bacterial production suggesting that fallen epithelial cells may be-
come bacteria

Also of significance, the emergence of more complex microor-
ganisms during mammalian decomposition without any evidence 
of their foreign origin maybe viewed as evidence of microevolution 
of normal gut bacteria.

It seems possible to conduct novel studies to demonstrate the 
transformation of organic matter to microorganisms and also the 
microevolution of organisms. It can easily be demonstrated that 
sterilized organic matter [milk and eggs] would generate micro-
organisms in sterile conditions in ambient temperatures. For the 
record, this author conducted a home experiment in which micro-
wave sterilized eggs in sterile conditions and in temperatures be-
tween 20 and 30 Celcius showed visually observable evidence of 
spoilage. It seems equally feasible to demonstrate microevolution 
of common bacteria to more complex bacteria in conditions similar 
to mammalian decomposition. 

Further experimental validation of the central paradigm of this 
paper-possible multiple pathways of infections-may help us better 
combat infectious disorders.
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