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The synthesis of nanoparticles using microorganisms and plants 
has been reported to possess biomedical applications. Biological 
synthesis of nanoparticles is an eco-friendly, cost-effective, biocom-
patible and safer approach [1]. Recently different types of metal-
lic nanoparticles are synthesized by green approach. Among the 
metal oxide nanoparticles, zinc oxide is very interesting because it 
has vast applications such as optical, piezoelectric, magnetic, and 
gas sensing. Besides these properties, ZnO nanostructure exhib-
its high catalytic efficiency, strong adsorption ability and are used 
more frequently in the manufacture of sunscreens, ceramics and 
rubber processing, wastewater treatment, and as a fungicide [2]. It 
has a wide range of biomedical applications like drug delivery, an-
ti-cancer, anti-diabetic, anti-bacterial, anti-fungal and agricultural 
properties [3-6]. Although ZnO is used for targeted drug delivery, 
it has the limitation of cytotoxicity which is yet to be resolved [7]. 
ZnO NPs have a very strong antibacterial effect against Gram nega-
tive and Gram positive bacteria at a very low concentration. Further, 
they have shown strong anti-bacterial effect than the chemically 
synthesized ZnO NPs [8-10].

Another feature of ZnO nanoparticles, as stated earlier, is their 
ability to induce reactive oxygen species (ROS) generation, which 
can lead to cell death when the antioxidative capacity of the cell 
is exceeded [16,17]. The ability of ZnO nanoparticles to generate 
ROS is related to their semiconductor properties. Several studies 
have suggested an increase in in vitro cytotoxicity with nanophase 
ZnO compared to micron-sized ZnO for several types of cancers in-
cluding glioma, breast, bone, colon, and leukemias and lymphomas 
[14,15]. ZnO nanoparticle exposure has been shown to induce the 
production of a variety of pro-inflammatory cytokines, including 
TNF-α, IFN-γ and IL-12, in in vitro and in vivo pulmonary inhala-
tion studies [12,18]. The ability of ZnO nanoparticles to induce 
pro-inflammatory cytokines at nanoparticle concentrations below 
those causing appreciable cell death suggests that, when used at 
appropriate concentrations, they could enhance tumor cell killing 
through the production of TNF-α (tumor necrosis factor), a cyto-
kine named for its potent anti-tumor activities [19]. Nanoparticle-
induced cytokines could also facilitate effective anti-cancer actions 
by eliciting a cytokine profile crucial for directing the development 
of Th1-mediated immunity [20]. The Th1 lymphocyte subset 
plays an essential role in enhancing the natural cytotoxic poten-
tial of natural killer cells and T cytotoxic cells against cancer cells. 
Recently, the anti-bacterial activity of Laurus nobilis leaf extract 
coated ZnO nanoparticles (Ln-ZnO NPs) has been reported against 
Gram positive (Staphylococcus aureus) and Gram negative (Pseu-
domonas aeruginosa) bacterial. In addition, the anti- cancer activ-
ity of Ln-ZnO NPs against human A549 lung cancer cells has been 
reported [21]. The therapeutic applications of Pongamia pinnata 
coated zinc oxide nanoparticles (Pp-ZnO NPs) against clinically 
important pathogenic bacteria, fungi, and human breast cancer 
(MCF-7) cells have been reported [22]. It was demonstrated that 
Plectranthus barbatus leaf extract mediated zinc oxide nanoparti-
cles effectively controlled the clinically important biofilm forming 
Gram positive (Bacillus subtilis) and Gram negative (Vibrio para-
haemolyticus and Proteus vulgaris) bacteria [23]. 

ZnO nanoparticles have gained interest in biomedical applica-
tions based on their high stability, inherent photoluminescence 
properties which can be useful in biosensing applications, and 
wide band-gap semiconductor properties useful in photocatalytic 
systems and promotion of reactive oxygen species generation. ZnO 
nanoparticles have recently been used in cholesterol biosensors, 
dietary modulators for hydrolase activity relevant to controlling 
diabetes and hyperlipaemia, as well as cell imaging [11,12]. Addi-
tionally, ZnO nanoparticles shown promise in modulating allergic 
reactions via inhibition of mast cell degranulation [13]. The diver-
sity of these activities has popularized ZnO nanomaterials in inter-
disciplinary research communities involving physicists, chemists, 
and biologists. One of the primary advantages for considering ZnO 
nanoparticles for use in cancer is the inherent preferential cytotox-
icity against cancer cells in vitro [14,15]. It is suggested that their 
cancer cell selectivity may be even further improved by engineer-
ing design to minimize harmful effects to normal body cells, which 
has been observed to occur at very high concentrations of ZnO 
nanoparticles, particularly those in the smaller size range of 4 - 20 
nm [12]. In this regard, the surface chemistry of ZnO nanoparticles 
readily lends them to functionalization with targeting proteins or 
chemical groups, and may be a key to rendering them benign to 
normal cells while still retaining their cancer targeting and killing 
properties.

The development of tumor-specific nanoparticles as vehicles 
for drug delivery is currently an area of intensive research with 
the potential to revolutionize therapeutics against cancer. The use 
of nanoparticles as drug delivery for anti-cancer agents has sig-
nificant advantages such as the ability to target specific locations 
in the body, reduce the overall amount of drug used, and the po-
tential to reduce drug concentrations at non-target sites resulting 
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in fewer side effects. This review has focused on the pharamaceuti-
cal applications of ZnO nanoparticles, including anti-bacterial, anti-
biofilm and anti- cancer properties. The green synthesized ZnO NPs 
has potential benefits compared to that of chemically synthesized 
one. This review concludes that the green synthesized ZnO NPs 
could be synthesized in large scale for pharmaceutical applications 
to mitigate human health associated diseases.
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