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Abstract
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  When a neurological stimulus reaches the end of a nerve fiber, neurotransmitters are produced, and by diffusing across the synapse, 
they cause the impulse to be transferred to another nerve fiber, a muscle fiber, or some other component. CNS comprises neurotrans-
mitter indicators in the form of genes and proteins that are expressed uniquely in various cells. The major neurotransmitter indica-
tors' neurological, developmental, and pathological functions are demonstrated in this article.

Abbreviations

5-HT3: Serotonin Receptor 3; AMPAα: Amino-3-Hydroxy-
5-Methyl-4-Isoxazole Propionic Acid; CaBP: Calcium-Binding 
Protein; CB: Calbindin; CR: Calretinin; ENK: Enkephalin; GABA: 
Gamma-Aminobutyric Acid; GABAAα1: Gamma-Aminobutyric Acid 
Receptor A, Α1 Subunit; MGluR: Metabotropic Glutamate Recep-
tor; MGluR1a: Metabotropic Glutamate Receptor 1, Splice Variant 
A; NMDA: N-Methyl-D-Aspartate; NPY: Neuropeptide Y; NT: Neu-
rotransmitter; PV: Parvalbumin; RLN: Reelin; SOM: Somatostatin; 
Sub P rec: Substance P Receptor; vGAT: Vesicular GABA Trans-
porter; vGluT: Vesicular Glutamate Transporters; VIP: Vasoactive 
Intestinal Polypeptide

Introduction

A neural impulse releases a chemical component called a neu-
rotransmitter at the end of the nerve fiber, which then transfers the 
impulse to another nerve fiber. Four neurotransmitters fall within 
the category of biogenic amines [1]. These include adrenaline, 
norepinephrine, dopamine, and serotonin. According to the action 
(direct or neuromodulatory), function (excitation - epinephrine, 
norepinephrine, or inhibition - serotonin, GABA) or, more specifi-

cally, the chemical structure of NTs may be used to classify them. 
Biochemical monoamines include serotonin, histamine, and cat-
echolamines (dopamine, norepinephrine, and epinephrine). Non-
monoamine Examples of NTs (such as ATP and adenosine), pu-
rines, and gasotransmitters include nitric oxide, carbon monoxide, 
and hydrogen sulfide [2].

Neurotransmitter types in the brain
Small, differently expressed proteins known as vesicular neu-

rotransmitter transporters control the entry of certain neurotrans-
mitters (NTs) into vesicles, controlling the number of neurotrans-
mitters released per vesicle before an electrical action potential 
arrives at a synaptic site. Nine vesicular transporters have been 
classified into three subgroups based on their substrate selectivity 
and amino acid sequence similarity. The three vesicular glutamate 
transporters (vGluT1, vGluT2, and vGluT3), the vesicular excit-
atory amino acid transporter (VEAT), and the vesicular nucleotide 
transporter are all members of the SLC17 gene family (VNUT). 
Vesicular acetylcholine transporter (VAChT) and vesicular mono-
amine transporters (VMAT1 and VMAT2), which transport sero-
tonin, dopamine, noradrenaline, and histamine, are members of 
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the SLC18 gene family. Last but not least, the vesicular GABA trans-
porter known as VGAT is a member of the SLC32 gene family [3].

The following action potential depolarizes the presynaptic cell 
membrane, which causes calcium channels to open and allow Ca2+ 
to flow into the axonal terminals. Now, calcium-binding proteins 
(CaBP), including calbindin (CB), calretinin (CR), and parvalbumin 
(PV), all helpful indicators that are described in more detail be-
low, bind to the ions, controlling intracellular calcium levels. The 
NT-containing compartments merge with the synaptic membrane 
when calcium levels are high enough to do so, releasing their con-
tents through exocytosis into the synaptic cleft. Then, neurotrans-
mitters try to bind particular receptors, which are themselves ex-
pressed differently on post-synaptic cells [4].

Important neurochemical markers
Membrane transporters
vGluT3

Glutamate is transported and packed into vesicles; it may re-
lease alongside GABA or serotonin. Cytoplasmic glutamate buffer. 
mRNA is expressed in the kidney and liver. Released momentarily 
in certain cells; Associated with non-syndromic hearing loss [5].

Calcium-binding proteins
CB

Contacts and co-localizes with the plasma membrane Ca2+ 
pump. Binds calcium ions to control and buffer the amounts in the 
cytosol. Controls the length of an action’s potential. An agent that 
protects the brain during times of excessive activity. Transcellular 
Ca2+ migration in intestinal absorptive cells and distal tubules of 
the kidney. Controls the pancreatic islet cells’ ability to secrete in-
sulin. Modulates apoptosis in osteoblasts, which mineralize bone, 
allegedly via binding to and changing the activity of caspase-3 
6]. Controls Ca2+ pools, which are essential for synaptic plastic-
ity. Alzheimer’s disease is aggravated by decreased CB expression. 
Apoptosis in Huntington’s disease may be facilitated by a decrease 
in CB+ neurons. The substantia nigra may degenerate as a result of 
the loss of CB+ neurons [7].

CR
Expressed in somatosensory pathways and the retina (e.g., 

cochlear nuclei and olfactory bulb). LTP is also induced. The me-
sothelium of the lung expresses. Detected in the testicular Leydig 
cells, ovarian theca lutein cells, and ovarian theca interna cells. In 

the sustentacular and cortical cells of the adrenal gland, there is 
weak to moderate expression. Expressed in cutaneous mast cell 
lesions and mast cell tumors [8]. Hirschsprung disease results in 
the absence of CR from intestinal nerves. CR was expressed differ-
ently in malignant and benign lung tumors in mesothelioma. CR 
expression in the hippocampus is downregulated in temporal lobe 
epilepsy [9].

PV
This protein, which is involved in muscle relaxation following 

contraction, transfers Ca2+ from the cytosol to intracellular stor-
age to hasten fast-twitch fiber relaxation [10]. Interneurons from 
people with schizophrenia have decreased PV expression [11]. Ad-
ditionally, in Creutzfeldt-Jakob disease, PV-expressing neurons are 
particularly susceptible [12].

Neuropeptides
As a result of post-translational changes, pro-peptides, the 

building blocks of proteins, are broken into peptides. The pep-
tide and the precursor both have the potential to act as molecular 
markers. Each of these peptides is hydrophilic.

CCK
The actions of glutamate, GABA, dopamine, and serotonin are 

modified [13]. When exposed to stress, CCK activity increased, in-
dicating that it could be involved in the stress response [14,15]. 
Memory role [16]. Causes the release of pancreatic enzymes into 
the intestines and gall bladder contraction. Appetite-suppressant. 
CCK can be found in the digestive system by day 15 and the neuro-
logical system as early as day 8 of embryonic development. Parkin-
son’s illness causes visual hallucinations [17] and colorectal carci-
nomas create CCK [18].

ENK
Pain perception and analgesia. Stress response. Presence in di-

gestive system peripheral nerves, but uncertain function. Immune 
cells are found in inflamed subcutaneous tissue. Contributes to cell 
proliferation. Plays a role in addiction and reward systems. Has 
been shown to cause seizures [6].

NPY
Control over food intake and fat accumulation. Vasoconstric-

tion in heart tissue is connected to its presence in the peripheral 
system. Levels of maternal food supply throughout development 

178

Markers of Neurotransmitters: A Review

Citation: Bon EI and Vihanga BTH. “Markers of Neurotransmitters: A Review”. Acta Scientific Orthopaedics 5.12 (2022): 177-183.



are correlated with NPY expression [19]. Obesity, anorexia, and 
bulimia are all associated with increases in NPY mRNA and NPY 
release. Connects to alcoholism.

SOM
Shaping of neuronal activity and plasticity during memory for-

mation. Sense of pain. Suppresses the release of prolactin, thyroid-
stimulating hormone, and growth hormone. Decreases gastric 
acid production and discharge in the stomach. Influences cerebel-
lar neuroblast growth, synaptogenesis, and axonal pathfinding 
[20,21]. Connected to epilepsy. Changes reported in multiple scle-
rosis, Parkinson’s disease, and other neurodegenerative illnesses.

VIP
Utilization and local energy metabolism by glycogenolysis. Neu-

roprotection. Suprachiasmatic nuclei time is synchronized with the 
ambient light-dark cycle through circadian rhythm control [20]. 
Expressed in peripheral nerves, including reproductive, cardiovas-
cular, and respiratory systems (pulmonary vasodilation, increased 
myocardial contractility, diuresis, increased excretion of Na+ into 
the urine) (increased blood flow to reproductive organs [21]). In 
the digestive tract, smooth muscles are relaxed to promote motil-
ity; absorption is inhibited, and water and electrolyte secretion are 
stimulated. The creation of the neural tube [22]. Function in neuro-
genesis is associated with neurodevelopmental problems, such as 
fetal alcohol syndrome, autism, and Down syndrome [23]. Tempo-
ral lobe epilepsy is linked [24,25].

NT Receptors
MGluR1a

Establishes a variety of chemical and electrical signaling path-
ways by binding glutamate. Regulates the excitability of cells and 
ion channels [44]. Auto-regulates synaptic transmission by lower-
ing glutamate release at the pre-synaptic site [45]. LTP and LTD 
are affected. Peripheral nerves are found in the conducting system, 
ganglion cells, and atrial nerve terminals of the rat heart. Harm the 
atrial cells in the heart. Shown in the thymus [46-48]. Reported to 
be present in osteocytes and to contribute to bone resorption. Ex-
pressed in the adrenal gland; may be involved in the stress reac-
tion. Engaged in the experience of pain and expressed in the inner 
ear. Little part in the development of the embryo and the fetus. Con-
nected to multiple sclerosis [49] and the condition Huntington’s 
[50], implicated in the development of ulcers and melanoma [51].

GABA Aα1
Binds GABA and triggers an electrical post-synaptic inhibitory 

response. Hippocampus [52, 53] CA1 basket cells and post-synap-
tic pyramidal cells use synapses differently. PV+ basket cells use 
this; CCK+ does not [54]. Found in the gonads, the small intestine, 
and the adrenal gland with little impact on prenatal and embryonic 
development [55,56]. Links to several neurological and mental 
health conditions, such as schizophrenia, alcoholism, anxiety dis-
orders, and Huntington’s disease [57].

5-HT3
Binds serotonin, a neurotransmitter. Mediates rapid excitatory 

transmission in the ferret visual cortex, amygdala, and hippocam-
pus as well as rat neocortical interneurons. Receptor antagonists 
induce LTP in the hippocampus (CA1) and enhance recall and spa-
tial memory. Dopamine release is influenced by agonist and antag-
onist action. Peripheral nerve system mediation of gastrointestinal 
pain, bloating, and nausea signals. Because serotonin is present, 
[58] the impacts of medications that are overused, such as cocaine, 
amphetamines, nicotine, as well as morphine, are changed.

CB1
Binds natural, synthetic, and endo-cannabinoids. NT release is 

inhibited pre-synaptically. Mediates short-term GABAergic plastic-
ity, which is characterized by depolarization-induced reduction 
of inhibition. White blood cells and the spleen; mediates cannabi-
noid-induced immunosuppression. Heart and gonad expression 
was also found. [59]. a significant part in drug misuse. Parkinson’s 
illness and schizophrenia are both associated with increased bind-
ing.

Sub P rec
Substance P binds. Modifies the inflammatory response, the 

adaptive stress response, and the perception of pain [26-28]. Va-
sodilation, modulation of gastrointestinal muscle action [29], and 
mediation of inflammatory processes. The length of the stress re-
sponse is shortened by substance P binding to receptors. Before 
birth, substance P expression is highly elevated; by P14, adult lev-
els are reached. Connected to ongoing pain in the emergence of 
obesity [30].
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Matrix proteins
RLN

Located in the cytosol, dendrite, and extracellular matrix. En-
hances the induction and maintenance of LTP, participate in adult 
neurogenesis, and affects synaptic plasticity. Controls the contin-
ued migration of neuroblasts produced in subventricular and sub-
granular zones and stimulates the formation of dendrites and den-
dritic spines. Involved in the small intestine’s cells’ migration and 
development. Related to the emergence of bone and teeth [31,32]. 
The liver, blood (plasma and cells), and reproductive organs are 
other sites of expression. Controls the movement and placement of 
neurons. Contributes to the stacking of neurons in the cerebellum, 
hippocampus, and cortex. Various malignancies and Reelin gene 
dysregulation are connected. Bipolar illness [33] and schizophre-
nia have been linked to decreased expression. Alzheimer’s disease 
and autism are both related to this [34].

Protein markers of schizophrenia 
Schizophrenia is a severe life-changing disease with complicat-

ed biological alterations and elevated striatal dopamine [35]. The 
biggest dopaminergic input to the brain is provided by the sub-
stantia nigra (SN), which also gets input from glutamatergic and 
GABAergic neurons and projects to the striatum, the main target of 
antipsychotic drugs.

Schizophrenia subjects had elevated TH levels. Tyrosine hy-
droxylase (TH) and glutamate decarboxylase (GAD67) protein 
levels were greater in the combined schizophrenia group. The 
levels of the vesicular glutamate transporter vGLUT2 were compa-
rable in medicated and unmedicated schizophrenia participants, 
but greater in unmedicated schizophrenic subjects than controls. 
Treatment-resistant patients exhibited TH and GAD67 levels that 
were significantly greater than controls. These findings point to 
increased GABA and dopamine transmission in the SN in schizo-
phrenia, which may be related to responsiveness to therapy [36].

In comparison to controls, SZ-On participants had TH pro-
tein and GAD67 levels that were noticeably greater. (In contrast, 
vGLUT2 levels were considerably higher in the SZ-Off group com-
pared to normal, but vGLUT1 levels in the typical and atypical 
treatment groups did not vary.) But showing a noticeable rise in 
the protein levels of TH and GAD67 [37-51].

As evidenced by greater TH and GAD67 levels, schizophrenia 
is revealed to have enhanced SN dopamine and GABA production 
when compared to NCs. In terms of treatment status and respon-
siveness, preliminary data show comparable increases in DA and 
GABA production in SZ-On and TR individuals. Elevated vGLUT2 
levels in the early study of treatment status in SZ-Off participants 
point to subcortical glutamate dysregulation. Patients using medi-
cation had higher levels of the proteins TH and GAD, whereas those 
not taking medication had higher levels of vGLUT2 [38-51].

Conclusion
According to all evidence and based on confirmed findings, it 

is clear that the markers of neurotransmitters play a variety of 
biological roles in addition to their neurological and pathogenic ef-
fects on the human body.

Additionally, the presence of neurotransmitter markers can be 
employed as a diagnostic tool for a variety of illnesses, not just neu-
rodegenerative ones.

As an example, while thinking about schizophrenia, research 
indicates irregularity in the dopamine and GABAergic systems in 
the SN, with probable changes in the glutamatergic system. These 
findings draw attention to possible dopaminergic, GABAergic, and 
glutamatergic interaction problems. Additionally, we can estimate 
the impact of antipsychotics used to treat schizophrenia based on 
the level of certain indicators.
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