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Ledolter and Kardon [1] describe how clinicians study the pro-
gression (that is, changes over time) of functional and structural 
ophthalmic characteristics such as OCT retinal nerve fiber layer 
and ganglion cell layer thickness, and visual field test sensitivity at 
given test locations and mean deviation and pattern standard de-
viation summaries. For each patient, n consecutive measurements 

Abstract
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Purpose: The standard trend analysis for data arising in clinical health care work considers a linear regression model on time with 
independent errors and estimates the trend parameter through least squares. We discuss why the independence assumption may 
be misguided. 

Methods: We suggest a trend model with autocorrelated errors that combines independent measurement errors and autoregres-
sive trend persistence, and we estimate the trend parameter through generalized least squares. We investigate the consequences of 
ignoring autocorrelation on the efficiency of the least squares trend estimate and on the false rejection probability when no trend is 
present. 

Results: While there will always be inefficiency in the least squares estimate when errors are correlated, we find that the efficiency 
loss – especially for moderate sample sizes – is small. Concerning the false rejection probability when no trend is present, we find 
evidence of spurious regression when autocorrelations in series of length 25 and 50 are ignored. 

Conclusions: In the typical clinic situation with a very moderate number of observations, the consequences of ignoring the autocor-
relation are negligible.

Translational Relevance: Clinicians assess patient progression on short-time records of consecutive measurements and need sim-
ple statistical tools to analyze the information. Clinical decisions are usually based on trend estimates that assume independent 
observations. While there are good reasons for successive observations to be correlated, this study shows that for short-time records 
the autocorrelations can be safely ignored.

Introduction
The linear trend model for assessing patient progression

Yt   are obtained at times Time1  < Time2  < .... Timen  . Times are typi-
cally expressed in years, and there is no requirement that times are 
spaced equally. Times are often expressed relative to the time of the 
initial visit. For example, Time1  = 0, Time2  = 0.5,  Time3  = 1.0,  Time4 

= 1.25, …,  Time8  = 4.14 express that eight observation are available 
– at the start of the study, after six months, after 12 months, after 
15 months, … and after 4 years and 365(0.14) = 51 days since the 
start of the study. 
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Typically a linear trend regression model is considered for the 
progression of the observations Yt (sometimes, their log-trans-
forms are used),

The intercept α reflects the expected level at the beginning of 
the study. The slope β reflects the expected change in measurement 
for a unit-change in time (which, in our illustration, is one year). 
The model makes an assumption of linearity; the mean change over 
the first year is the same as the mean change in the second year, and 
so on. It also assumes that measurement errors εt are independent, 
homoscedastic (that is, with constant variance σ2), and normally 
distributed. Least squares estimates are optimal under these as-
sumptions. The least squares estimates of the slope and intercept 
are given by

where and . Standard 
errors of the least squares estimates are given by 

The error standard deviation σ is replaced by its estimate, 

, and t-distributions are used for confi-

dence intervals and significance tests if errors follow a normal dis-
tribution. See Chapter 2 of Abraham and Ledolter [2]. 

Caprioli., et al [3], in their analysis of visual field data, comment 
that there is no consensus about which statistical model is most 
appropriate for clinical or investigative use and that efforts to mea-
sure and define change remain hampered by several inconvenient 
realities of visual field progression. Deterioration is neither linear 
nor constant over time, and psychophysical measurements are no-
toriously noisy generating unusual values (outliers). These inher-
ent properties can limit the detection of progression. 

Methods
The linear trend model revisited

Independence of the errors is a strong assumption of the model 
in equation (1). Independence assumes that trend-adjusted obser-
vations on the same subject taken at different time periods are not 
correlated. Serial (auto) correlation can arise for several reasons. 
Measurement errors εt at successive time periods may be related. 
This may be true when there is carry-over in the measurement 
process and observations are taken in rapid succession, but may 
be less of a problem when observations are spaced further apart 
such as the six months between typical clinic visits. A second rea-
son for serial correlation of errors in the model in equation (1) is 
that the assumed linear trend, Tt =  α + βTimet, is not appropriate. 
The true trend may be nonlinear and/or even stochastic, and then 
the autocorrelation in the deviations from an assumed linear trend 
model reflects the inaccurate specification of the time trend.

The presence of serial correlation can have an impact on the 
statistical inference, as the correlation affects both parameter es-
timates and standard errors of the estimates. The least squares 
estimates discussed above are no longer the best estimates. Gener-
alized least squares estimates that incorporate the autocorrelation 
of the errors are more efficient than the usual least squares esti-
mates that are derived under independence (this follows from the 
Gauss-Markov theorem; see Section 4.6 in Abraham and Ledolter 
[2]). Furthermore, and this is more critical, the standard errors 
shown in equation (3) – that is, the standard errors of the (inef-
ficient) least squares estimates derived under independence – are 
no longer correct when errors are autocorrelated. Depending on 
the autocorrelation, they can be too small leading to spurious sig-
nificance of the trend coefficient, or too large leading the investiga-
tor to miss the presence of a trend. See Box and Newbold [4] and 
Granger and Newbold [5] for early papers on the presence of spu-
rious regressions when ignoring the autocorrelation of the errors. 

Because of these consequences it is important to check wheth-
er serial correlation is present. This can be done as follows. The 
autocorrelations among the deviations from the linear trend, 

, can be estimated with the residuals from 
the fitted trend model, . For the following dis-
cussion we assume that the time-spacings between successive 
observations are the same (such as the six months in the typical 
clinic situation), which allows us to write Timet = t. The autocor-
relation between errors m periods apart, 
, is estimated with the sample autocorrelation at lag m, 

 ; the last term follows because 
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regression residuals always add to zero. The standard error of the 
lag m sample autocorrelation, , see Box, Jenkins, Re-
insel and Ljung [6], can be used to assess whether models for serial 
correlation need to be considered. Sample autocorrelations rm out-
side the 2-sigma limits  indicate that  . 

For small numbers of observations (as is the case in our clinical 
setting where n is usually not much larger than 10) this diagnostic 
check can spot at most gross violations of independence. For small 
n, sample autocorrelations can be calculated reliably only for small 
lags m such as lag 1 (measuring the association between adjacent 
observations) and lag 2 (measuring the association two time pe-
riods apart), and sample autocorrelations would have to be quite 
large to exceed the 2-sigma limits. In the case of multiple subjects, 
the lag 1 autocorrelations can be visualized on a dot plot, and a 
one-sample t-test can be used to assess whether the mean lag 1 
autocorrelation is different from zero.

Books on time series analysis (such as Box, Jenkins, Reinsel and 
Ljung [6], Abraham and Ledolter [7]) propose several useful parsi-
monious models to characterize the autocorrelation in the errors. 
The (first-order) autoregressive model extends independence in a 
very simple way. The ARMA(1,1) model (a first-order autoregres-
sion combined with a first-order moving average component) is 
another useful model. This model is discussed in Ledolter and Kar-
don [8] and can be motivated as follows. The measurement errors   
εt  in model (1) are assumed independent as there is little reason 
for an instrument carry-over from one measurement error to the 
next. But the deterministic linear trend (regression) component 
Tt =  α + βTimet may not be appropriate as the progression of the 
biological signal may also be affected by stochastic perturbations 
rt that lead to persistent deviations from the deterministic linear 
trend. Persistence implies that a signal at time t above the trend 
line increases the likelihood that signals at subsequent time points 
are also above the trend line. In other words, signals tend to stay 
above (or below) the trend line for several periods in a row. Per-
sistence can be modeled with a first-order autoregressive model 

.  Here B is the backshift operator 

(that is, ), Φ is the autoregressive parameter (which, for 

statistical stationarity, has to be between -1 and 1), and are inde-
pendent mean zero random variables with variance . The first-
order autoregressive model for rt implies autocorrelations Corr(rt , 

rt-m)  = Φm and variance , and persistence is achieved when 

the autoregressive parameter is positive and close to 1. For Φ = 1 
the autoregressive model becomes the (non-stationary) random 
walk which generates long persistent excursions from the deter-
ministic model. 

Adding biological persistence to the linear deterministic trend 
model in equation (1) leads to a more realistic model of change, 

Yt = α + βt + rt + εt             ........(4)

Subtracting the deterministic linear trend from the measure-
ments, leads to 

This model can be written as 
, or . It is known as the autoregressive-
moving average ARMA(1,1) model: there is just one lagged au-
toregressive term and the autocorrelations of the moving average 
component on the right-hand side of the model are zero after lag 
1. It is straightforward to show that the standard deviation and 
the autocorrelations of the deviations from the linear trend model 

  Yt - (α + βt) are given by

For σ2
ε = 0 (implying that there is no measurement error) the 

ARIMA(1,1) model simplifies to the first-order autoregressive 
model with standard deviation σr and autocorrelations ρm = Φm.

For illustration, assume that the increase over a three-year pe-
riod amounts to 1 unit, and that we have available seven equally-
spaced observations (six months apart) over this interval. Hence 
t = 1, 2, …, 7 and β = 1/6. Assume that persistence is modeled 

with autoregressive parameter Φ = 0.8, and assume variance ratio 
 . Measurements on ophthalmic characteristics are no-

toriously noisy which implies that the measurement error should 
be larger than the difference between the actual trend and the de-
terministic linear trend. With these choices of parameters the au-
tocorrelations of   are ρ1 = 0.8/(1+3) = 0.2 and ρm = 
(0.2) (0.8)m-1 for  m ≥ 1. The lag 1 autocorrelation (the correlation 
between observations six months apart) is moderate in size (0.2), 

.........(5)
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but there is a persistent slow decay in the autocorrelations from 
lag 1 onwards; for larger measurement error, the persistent decay 
in the autocorrelations starts at an even smaller initial autocorre-
lation. For illustration, we have simulated time series of length 7 
with these parameters (and total variance ). Figure 1 
shows 10 replications of the trend α + βt + rt on the left and of the 
time series Yt = α + βt + rt + εt  on the right. Trends increase, but now 
the change over time is no longer constant across the whole time 
period.

Figure 1: Signals and observations for 10 simulated time 
series from the model in equation (4).

There is empirical evidence [9,10] that errors in regressions 
of time series measurements taken on humans (anthropometric 
data) on deterministic functions of age follow ARMA(1,1) models. 
For example, Carrico., et al [10] show that – in a regression of blood 
pressure of young adults on linear and quadratic functions of age, 
BMI and height – ARMA(1,1) errors are preferable to AR(1) and 
compound symmetry errors. Here we have given an explanation 
why an ARMA(1,1) represents a reasonable model. 

The adequacy of the linear trend model in equation (1) should 
always be checked. If there is evidence of autocorrelation, the com-
monly-used independence assumption for the error terms must 
be generalized. The error can be represented more generally with 
time series models such as the ARMA(1,1) model discussed here. 
The estimate of the trend parameter and its correct standard er-
ror depend on autocorrelation matrix of the errors, and can be ob-
tained through generalized least squares; see Abraham and Ledolt-
er [2] and the equations in the Appendix. 

For the ARMA(1,1) model and n equally-spaced observations, 
we have shown that the n x n correlation matrix has entries ρii = 1 

in the diagonal and  for i ≠ j. The calculations of 

the autocorrelations are easily adapted to the situation when ob-
servations are not equally-spaced. The entries of the correlation 
matrix for n unequally-spaced observations, with pair-wise time 
differences dij = Timei - Timej  ≠ 0, are given by 

. This correlation matrix, together with the standard deviation  

, are used in the calculation of the generalized least 
squares estimates of the parameters α and β in the trend model (4) 
and their correct standard errors that reflect the autocorrelation in 
the errors. Note, however, that the calculations assume that both 
the autoregressive parameter Φ and the variance ratio are 
known.

We assume that observations are generated from the linear 
trend model in equation (4), with first-order autoregressive per-
sistence and independent measurement errors. The standard re-
gression analysis in the Introduction ignores persistence. Ignoring 
the autocorrelation has consequences on (1) the efficiency of the 
estimate of the trend parameter and (2) the significance test of the 
trend parameter estimate. In this section we illustrate the conse-
quences of ignored autocorrelation by comparing: 

Results
Consequences of ignored autocorrelation 

•	 The standard error of the generalized least squares estimate 
with the standard error of the least squares estimate, as-
suming in both cases that observations come from the trend 
model in equation (4) with correlated errors. The ratio of 
the two standard errors reflects the relative efficiency of the 
two estimates. 

•	 The probability of falsely finding a significant trend regres-
sion when using the incorrect least squares analysis with the 
probability of falsely finding a significant trend regression 
when using then correct generalized least squares approach. 
The probability should be five percent if tests are carried out 
at the 5-percent significance level.

We make these comparisons for trend regressions on Timet = t  
for t =  1,2,...., n, for three different sample sizes (n = 7 as in a typical 
clinical setting, n = 25, and n = 50 when considerably more obser-
vations are available). We consider variance ratios  from 0 
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to 9 (with 0 representing persistence without measurement error), 
and autoregressive persistence Φ from 0 to 0.99. 

For comparison (1) we use the well-known algebraic expres-
sions for the variances of the least squares and the generalized 
least squares estimates when errors follow model (4); the stan-
dard errors are given by the square roots of the second diagonal el-
ements of the matrices in equation (A2) of the appendix. The ratio 
of the two standard errors,  , in Figure 2 expresses 
the efficiency of the least squares estimate relative to the gener-
alized least squares estimate. A ratio smaller than one indicates a 
loss in efficiency of the least squares estimate. The efficiency loss 
of the least squares estimate changes with variance ratio  , 
persistence autocorrelation Φ, and sample size. While there is al-
ways inefficiency when using the least squares estimate when er-
rors are correlated, the efficiency loss – especially for small sample 
sizes – is rather small. Even in the worst case (large sample size n 
= 50, without measurement error) the efficiency loss of the stan-
dard least squares estimate is at most 12 percent [this occurs at Φ 
= 0.82 when the standard deviation of the optimal GLS estimator is 
0.88 times of the standard deviation of the inefficient least squares 
estimator]. For small sample size n = 7 and for the case when mea-
surement errors exceed the trend persistence (ratio   = 3 or 
more), the efficiency loss is negligible. 

Remark: This first comparison compares the standard errors of 
the two competing estimates assuming that the observations are 
generated under the correlated error structure that makes the GLM 
estimate optimal. It is not comparing the standard error of the GLS 
estimate under the correct correlation structure with the standard 
error of the incorrect LS estimate under independence. 

Figure 2: Relative efficiency of the least squares estimate  
when compared to the generalized least squares estimate:  

σ( βGLS) / σ( βLS) . Three different sample sizes (n = 7, 25, 50) and 
ten different variance ratios  σε

2 / σr
2, from 0 to 9.

^ ^

For comparison (2) we use simulations of 100,000 indepen-
dent time series, for each selected variance ratio, autoregressive 
parameter, and sample size. We use the rmvnorm function of the 
R library mvtnorm [11] to generate time series with slope 0. As-
suming independence, we obtain the least squares estimate of 
the slope (equations (1) and (A1) in the appendix), the estimate  

 of the error standard deviation σ 

(in Introduction), and the estimated standard error of the slope 
which we get by replacing σ in  of equations (3) and (A3) 
with its estimate . The left panels of Figure 3 show the prob-
abilities of falsely finding a significant trend regression when using 
a five percent significance test with cutoffs provided by the t-dis-
tribution with n-2 degrees of freedom. The right panels of Figure 3 
show the probabilities of falsely finding a significant trend regres-
sion when basing the five percent significance test on the general-
ized least squares analysis that incorporates the autocorrelation. 
This test statistic uses the generalized least squares estimate   
from equation (A1) and its estimated standard error that we obtain 
by replacing the error standard deviation σ in  of equation 

(A2) with its estimate  . 

The generalized least squares approach reproduces the expect-
ed five percent false rejection probabilities for a five percent sig-
nificance test. On the other hand, the incorrect least squares analy-
sis in the left panel rejects too often, depending on variance ratio 

, persistence autoregression parameter Φ, and sample size 
n. The standard least squares regression performs poorly if there is 
no measurement error and all deviations from the constant trend 
are due to the autoregressive persistence (  = 0). The false 
rejection probabilities increase steadily with the autoregressive 
parameter Φ . When Φ approaches 1 (random walk persistence), 
the proportions of false rejection are 0.43 (n = 7), 0.74 ( n = 25) and 
0.83 (n = 50). While the presence of measurement error ( > 
0) improves the situation, the false rejection rates for large sample 
size ( n = 50) remain considerably larger than the expected 5 per-
cent. When = 3, the false rejection rate can be as large as 30 
percent. On the other hand, for small sample size n = 7, the false 
rejection rates increase by at most 2.5 percentage points (from the 
expected five percent to about 7.5 percent) when the variance of 
the measurement errors exceeds the variance of the persistence by 
a factor of 3 (  ≥ 3). 

In our simulations we assume that the correlation struc-
ture is known (a simplifying assumption as in practice the vari-
ance ratio and the autoregressive parameter have to be es-
timated), but estimate the error standard deviation σ. The 
(least squares)-based estimate of the error standard deviation, 

 , tends to be too small if er-
rors are positively correlated – and this is the reason for the 
spurious regression. With correlated errors, the sum of squares  
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has no longer a chi-square distribution 

with n-2 degrees of freedom. For extreme positive correlation, 

 approaches a multiple (a multiple of the 

sample size) of a chi-square distribution with 1 degree of freedom. 

This implies that with correlated errors many of the estimates 

  tend to be too small. 

Figure 3: Probabilities of falsely finding a significant trend regression when using the incorrect standard least squares regression 
analysis (left panels) and the correct generalized least squares analysis (right panel). The ten graphs on the right panel are all very close 

and cannot be distinguished.

Clinicians have limited data to estimate patient progression 
which leads them to adopt simple models that specify linear trend 
progression and independent errors. We caution in this paper that 
autoregressive trend persistence may be present and that devia-
tions from the linear trend may not be independent, and we study 

Discussion and Concluding Remarks the consequences of ignoring the resulting autocorrelation. We 
find that one should be concerned about finding spurious regres-
sion when ignoring the autocorrelations in series of length 25 and 
50. However, for the typical clinic situation with n = 7 observations 
and measurement error, the effects of ignoring the autocorrelation 
are negligible. 

08

Modeling Patient Progression when Observations are Autocorrelated

Citation: Johannes Ledolter. “Modeling Patient Progression when Observations are Autocorrelated”. Acta Scientific Ophthalmology 2.7 (2019): 03-09.



This research was supported through grant C9251-C from the 
US Department of Veterans Affairs Office of Rehabilitation Re-
search & Development.

Funding 

There are no conflicts of interest to declare.

Conflict of Interest

We consider the regression model (t = 
1,2,..,n), with autocorrelated errors = rt + εt that combine inde-
pendent measurement errors εt and autoregressive persistence 

 . The errors  have mean zero and standard de-

viation  , and correlation matrix  Ω with elements 

, for i ≠ j. All parameters of the time series 
model are assumed known. Linear model matrix results (see, for 
example, Chapter 4 of Abraham and Ledolter [2]) are used to ob-
tain the least squares and generalized least squares estimates and 
their variances. The tth row of the n x 2 regression design matrix X is 
given by (1, Timet ). The estimates of the 2 x 1 vector of regression 
coefficients are 

  and        .........(A1)

with variance matrices under the generating regression model 

Appendix 

and   ..... (A2)

Elements in the second row and second column of these ma-
trices (the element corresponding to the slope β) are used in the 
efficiency comparisons of the slope estimates.

The variance of the least squares estimate that neglects the au-
tocorrelation in its derivation (the one listed in the standard re-
gression output and used to calculate an incorrect test statistic) is 
given by 

The element in the second row and second column of this ma-
trix is used in comparison (2) of the Results section. 
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