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Abstract
Introduction: Early detection of malignant transformation in oral potentially malignant disorders (OPMDs) is vital for improving 
survival in oral squamous cell carcinoma (OSCC). Conventional diagnostics, including histopathology, are invasive and subject to vari-
ability. Radiomics, which extracts quantitative features from imaging data, combined with machine learning (ML) and deep learning 
(DL), offers reproducible, non-invasive biomarkers to complement clinical assessment.

Discussion: Radiomics workflows involve image acquisition, segmentation, feature extraction, and predictive modeling. Applied 
across modalities such as CT, MRI, PET, ultrasound, autofluorescence, and optical coherence tomography (OCT), radiomic features 
integrated with ML algorithms enable risk stratification, guided biopsies, and longitudinal monitoring of OPMDs. Emerging tech-
nologies, including hyperspectral imaging, Raman spectroscopy, digital pathology, and liquid biopsy integration, further enhance 
diagnostic potential. Recent advances in software and AI platforms—such as PyRadiomics, 3D Slicer, CaPTk, MONAI, AutoRadiomics, 
cloud AI, federated learning, and explainability frameworks—are accelerating clinical translation. However, challenges persist due to 
heterogeneous data, small sample sizes, and segmentation variability. Solutions include harmonization techniques, data augmenta-
tion, robust automatic segmentation, and adherence to reporting standards.

Conclusion: Radiomics and AI-driven methods show strong promise for early, non-invasive detection of OPMD progression to OSCC. 
While standardization, reproducibility, and clinical validation remain barriers, advances in AI ecosystems and collaborative, multi-
institutional research are paving the way toward precision diagnostics and clinical implementation.
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Abbreviation

AI: Artificial Intelligence; AutoML: Automated Machine Learn-
ing; CaPTk: Cancer Imaging Phenomics Toolkit; CLAIM: Checklist 
for Artificial Intelligence in Medical Imaging; CNN: Convolutional 
Neural Network; CT: Computed Tomography; DL: Deep Learning; 
HER: Electronic Health Record; FDG: Fluorodeoxyglucose; GLRLM: 
Gray Level Run Length Matrix; GLSZM: Gray Level Size Zone Ma-
trix; GLCM: Gray Level Co-occurrence Matrix; GUI: Graphical User 
Interface; H&E: Hematoxylin and Eosin; HIS: Hyperspectral Im-
aging; IBSI: Image Biomarker Standardisation Initiative; LASSO: 

Least Absolute Shrinkage and Selection Operator; LoG: Laplacian of 
Gaussian; ML: Machine Learning; MONAI: Medical Open Network 
for AI; MRI: Magnetic Resonance Imaging; NBI: Narrow Band Imag-
ing; OCT: Optical Coherence Tomography; OPMD: Oral Potentially 
Malignant Disorder; OSCC: Oral Squamous Cell Carcinoma; PACS: 
Picture Archiving and Communication System; PCA: Principal Com-
ponent Analysis; PET: Positron Emission Tomography; ROI: Region 
of Interest; SHAP: SHapley Additive exPlanations; SOP: Standard 
Operating Procedure; SVM: Support Vector Machine; TRIPOD-AI: 
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Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis Using AI; US: Ultrasound; WSI: 
Whole Slide Imaging; XAI: Explainable Artificial Intelligence

Introduction
Oral squamous cell carcinoma (OSCC) is responsible for the 

vast majority of oral cancers worldwide and carries substantial 
morbidity and mortality, in part because many cases are diagnosed 
at an advanced stage [1]. Early identification of lesions at high risk 
of malignant transformation — oral potentially malignant disor-
ders (OPMDs) such as leukoplakia, erythroplakia, oral submucous 
fibrosis and oral lichen planus — is therefore a priority for reduc-
ing OSCC burden [2]. Histopathology remains the gold standard for 
diagnosing dysplasia but suffers from sampling error and inter-ob-
server variability; moreover, biopsies are invasive and not optimal 
for longitudinal surveillance [3].

Radiomics translates medical images into quantitative descrip-
tors that reflect tissue composition, architecture and heterogene-
ity. When combined with ML and DL, these descriptors can gen-
erate predictive models for lesion classification, risk stratification 
and guidance for biopsy sampling. Radiomics has matured in mul-
tiple oncologic domains and is rapidly being adapted to oral mu-
cosal disease and early OSCC detection [4-6]. This review provides 
a structured synthesis of the field, with emphasis on modalities, 
feature types, ML strategies, software/platforms, limitations and 
future directions, followed by a practical table summarizing recent 
advances.

Radiomics: concept and standardized workflow
Radiomics is founded on the premise that imaging contains 

quantifiable information beyond human interpretation. A repro-
ducible radiomics pipeline comprises:

•	 Image acquisition and harmonization — consistent proto-
cols or harmonization techniques to mitigate inter-scanner 
differences [7].

•	 Segmentation — defining the region of interest (ROI) man-
ually, semi-automatically or automatically; segmentation 
variability is a major source of downstream variability [8].

•	 Preprocessing — resampling, intensity normalization and 
denoising [9].

•	 Feature extraction — first-order (histogram), shape, tex-
ture (GLCM, GLRLM, GLSZM), and higher-order features 
(wavelets, Laplacian of Gaussian) [10].

•	 Feature selection/reduction — LASSO, PCA, mutual infor-
mation, recursive feature elimination to avoid overfitting 
[11].

•	 Model training and validation — classical ML (SVM, random 
forest, gradient boosting) or DL (CNNs) with nested cross-
validation and preferably external testing [12].

•	 Explainability and calibration — SHAP/LIME and calibra-
tion plots to support clinical trust and decision thresholds 
[13].

Adhering to reporting standards (Image Biomarker Standardi-
sation Initiative, TRIPOD-AI, CLAIM) improves reproducibility and 
comparability across studies [7,14].

Imaging modalities and their radiomic utility in OPMD
Optical modalities (clinical photography, autofluorescence, 
NBI, OCT)

Optical imaging is directly applicable to superficial oral mucosa. 
Clinical photographs and wide-field imaging capture macroscopic 
features; DL can triage lesions for referral. Autofluorescence and 
narrow band imaging (NBI) reveal metabolic and vascular chang-
es; quantitative texture analysis reduces subjective interpretation. 
OCT provides subsurface microstructural imaging with near-histo-
logic resolution; radiomic features from OCT can quantify epithe-
lial thickness, signal heterogeneity and epithelial–stromal interface 
disruption associated with dysplasia [15-17].

Hyperspectral imaging (HSI), Raman spectroscopy, multipho-
ton microscopy

HSI records spectral signatures of tissue and enables biochemi-
cal discrimination (hemoglobin, collagen, keratin). Raman spec-
troscopy detects molecular vibrational fingerprints; multiphoton 
microscopy visualizes collagen and cellular autofluorescence. Ra-
diomic and ML analysis of data from these modalities can identify 
biochemical alterations in OPMDs preceding morphological change 
[18-20].

Cross-sectional and metabolic imaging (CT, MRI, PET)
CT and MRI provide anatomical context and are more common-

ly used in staging; however, radiomic features from these modali-
ties have prognostic value in head and neck oncology and can be 
applied to complex or deep lesions. PET radiomics (e.g., ^18F-FDG) 
captures metabolic heterogeneity that may correlate with aggres-
sive biology [21,22].
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Digital pathology/pathomics
Whole-slide imaging (WSI) of H&E sections enables compu-

tational pathomics: extraction of nuclear morphology, spatial ar-
rangement, stromal features and immune cell patterns. Pathomics 
models have shown predictive power for malignant transforma-
tion in oral epithelial dysplasia and often augment or outperform 
conventional grading [23,24].

Machine learning strategies and deep learning paradigms
Traditional ML

After feature engineering, classical supervised algorithms (ran-
dom forest, SVM, gradient boosting machines) are commonly used 
for OPMD classification and risk modelling. They provide relative 
interpretability, work well with limited data and allow feature-im-
portance analysis [11,25].

Deep learning
Deep convolutional neural networks (CNNs) can learn hier-

archical representations directly from images (clinical photos, 
autofluorescence, OCT, WSI). Transfer learning using pre-trained 
architectures (ResNet, EfficientNet) mitigates small dataset issues. 
Hybrid models combining handcrafted radiomic features with 
CNN outputs often achieve the best performance [19,26].

Model validation and generalizability
Robust validation requires nested cross-validation and, crucial-

ly, external multi-center testing. Federated learning offers a path 
to pooling model knowledge without sharing raw data, addressing 
privacy and legal barriers [27].

Explainability and clinical integration
Explainable AI (XAI) methods (SHAP, Grad-CAM, LIME) help vi-

sualize which features or image regions drive predictions, aiding 
clinician acceptance and facilitating regulatory submission [13].

Clinical applications and demonstrated use-cases
•	 Screening and triage — CNNs on clinical photographs or 

wide-field imaging can flag suspicious lesions for specialist 
referral, a scalable approach for low-resource settings [15].

•	 Risk stratification of OPMDs — radiomic signatures stratify 
lesions into low versus high malignant potential, informing 
surveillance intervals or early intervention [17].

•	 Biopsy guidance — radiomic heatmaps and OCT-derived 
maps can localize areas with most severe architectural dis-
ruption to target biopsy and reduce sampling error [23].

•	 Longitudinal monitoring (delta-radiomics) — tracking ra-
diomic changes over time (delta features) improves early de-
tection of progression [22].

•	 Prognostication post-transformation — imaging phenotypes 
correlate with recurrence risk and treatment response fol-
lowing OSCC diagnosis; radiomics aids personalized manage-
ment [21,24].

Recent software, platforms, and emerging AI ecosystems
Advances in software and computational ecosystems have sig-

nificantly lowered the barriers to radiomics research and facili-
tated clinical translation. Among the most widely adopted tools is 
PyRadiomics, an open-source Python library that provides stan-
dardized radiomic feature extraction and is compliant with the Im-
age Biomarker Standardisation Initiative (IBSI), making it highly 
reliable for reproducible workflows [26]. Similarly, the 3D Slicer 
radiomics extension offers modular pipelines for visualization, 
segmentation, and feature extraction within a graphical user inter-
face, which makes it particularly suitable for integration into clini-
cal research environments [28]. The Cancer Imaging Phenomics 
Toolkit (CaPTk) provides advanced analytics capabilities, combin-
ing radiomics with machine learning modules; although developed 
primarily for neuro-oncology, it is readily adaptable to head and 
neck imaging studies [27].

In parallel, deep learning (DL) applications have been acceler-
ated by platforms such as MONAI (Medical Open Network for AI), 
a PyTorch-based framework specifically optimized for medical im-
aging, offering community-driven best practices and reproducible 
training recipes [28]. The emergence of AutoRadiomics and auto-
mated machine learning (AutoML) platforms has further stream-
lined development by automating feature selection, hyperparam-
eter tuning, and validation, thereby reducing coding requirements 
and enabling broader adoption [29,30]. For scalability and deploy-
ment, cloud-based AI platforms including Google Cloud AutoML, 
AWS SageMaker, and Microsoft Azure ML provide robust compu-
tational infrastructure for training large-scale models and hosting 
real-time inference in clinical settings [29].
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Privacy and data security remain critical in multi-institutional 
collaborations, and here federated learning frameworks such as 
Flower and TensorFlow Federated enable decentralized model 
training without centralizing patient data, addressing both regu-
latory and ethical concerns [27]. To improve transparency and 
clinical adoption, explainability tools such as SHAP, LIME, and 
Grad-CAM provide interpretable outputs that enhance clinician 
trust and are increasingly demanded in regulatory evaluations 
[13]. Collectively, these software platforms and AI ecosystems sup-
port reproducible radiomics pipelines, from image ingestion and 
harmonization through feature analysis and model deployment, 
thereby accelerating multi-center research and facilitating pilot 
clinical translation.

Emerging technologies and multi-modal integration

•	 Hyperspectral imaging + radiomics: Spectral signatures 
coupled with texture features can improve biochemical dis-
crimination of dysplasia [18].

•	 Raman spectroscopy and multiphoton microscopy: Mo-
lecular-level imaging fed to ML models can identify early car-
cinogenic biochemical changes [19,20].

•	 Liquid biopsy + radiomics: Integrating circulating tumor 
DNA, exosomal RNA or salivary biomarkers with image fea-
tures produces stronger predictive models (multi-omics fu-
sion) [23,25].

•	 Pathomics + radiomics (cross-scale models): Fusing WSI 
features with in-vivo imaging provides comprehensive phe-
notyping from molecule to organ [23,24].

•	 Delta-radiomics and temporal modeling: Sequential im-
aging captures trajectory of lesion evolution and improves 
early detection sensitivity [22].

Limitations, pitfalls, and strategies to address them
Despite the promising potential of radiomics and machine 

learning in predicting OPMD progression to OSCC, several limita-
tions and pitfalls must be acknowledged. A major challenge is the 
heterogeneity of imaging data and acquisition protocols across 
centers, which can significantly affect feature reproducibility. 

To mitigate this, harmonization techniques such as ComBat and 
the adoption of standardized acquisition SOPs have been recom-
mended [7]. Another critical issue is the reliance on small and often 
imbalanced datasets, which increases the risk of model overfitting 
and limits generalizability. Strategies such as data augmentation, 
transfer learning, and federated learning have been employed to 
increase effective sample size and model robustness [26,27]. Seg-
mentation variability, both inter- and intra-observer, also remains 
a key obstacle, as manual segmentation introduces subjectivity and 
impacts feature stability. The development of robust automatic seg-
mentation algorithms, alongside quantification of inter-rater vari-
ability in model reporting, is essential to overcome this [8].

Reproducibility and reporting standards further present chal-
lenges in this rapidly evolving field. To address these, adherence to 
guidelines such as the Image Biomarker Standardisation Initiative 
(IBSI), Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis using AI (TRIPOD-AI), and 
the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) 
is strongly encouraged, along with sharing of code, models, and da-
tasets whenever feasible [14]. Finally, regulatory and ethical con-
siderations must be addressed before translation into clinical prac-
tice. Transparent validation pipelines, systematic bias assessment 
across demographic groups, and prospective clinical trials are nec-
essary to demonstrate real-world clinical impact and ensure safe, 
equitable deployment of AI-based radiomic tools [13,30].

Future Directions
To move radiomics and ML from research to routine OPMD care, 

priorities include: building large, well-annotated multi-center co-
horts with longitudinal outcomes; federated consortia to protect 
privacy while enabling model generalization; prospective impact 
trials demonstrating clinical utility (reduced missed transforma-
tions, optimized biopsy strategies, improved survival); and devel-
opment of clinician-centric interfaces with clear explainability and 
integration into electronic health records/PACS. Radiogenomic and 
multi-omic models that combine imaging, pathology and circulat-
ing biomarkers are particularly promising for personalized surveil-
lance [23-25].

Citation: Parul Dixit and Rajeev R. “Radiomics and Machine Learning in the Early Detection of Oral Potentially Malignant Disorders (OPMD) Transition to 
Oral Squamous Cell Carcinoma (OSCC)". Acta Scientific Otolaryngology 7.10 (2025): 11-16.



15

Radiomics and Machine Learning in the Early Detection of Oral Potentially Malignant Disorders (OPMD) Transition to Oral Squamous Cell 
Carcinoma (OSCC)

Table 1: Recent advances: technologies, applications and representative references.

Advance/Platform Modality/Data Primary Application (s) Key advantages Representative refs
PyRadiomics CT/MRI/PET/OCT/US 

(feature extraction)
Standardized radiomic fea-

ture extraction
Open-source, IBSI-aligned, 

widely used
[26]

3D Slicer (Radiomics 
ext.)

Multi-modal imaging Segmentation → radiomics 
pipeline

GUI, modular, extensible [28]

CaPTk MRI/CT Quantitative imaging analyt-
ics and ML

Neuro/oncology toolkit, radi-
ogenomic modules

[27]

MONAI Medical imaging DL Deep learning model devel-
opment

PyTorch-based, reproducible 
workflows

[28]

AutoRadiomics/AutoML Multi-modal Automated feature selection 
and model tuning

Lowers technical barrier, 
faster prototyping

[29,30]

Federated Learning 
frameworks

Multi-institutional image 
datasets

Collaborative model training 
without data sharing

Privacy preserving, improves 
generalizability

[27]

SHAP/LIME/Grad-CAM 
(XAI)

Any ML/DL model Explainability and feature 
attribution

Clinician interpretability, 
auditability

[13]

OCT + Radiomics OCT Subsurface dysplasia detec-
tion and biopsy guidance

Near-histologic detail, non-
invasive

[15,19]

Hyperspectral Imaging 
+ ML

HSI Biochemical discrimination 
of dysplasia

Spectral specificity, non-
contact

[18]

Raman spectroscopy + 
ML

Raman Molecular fingerprinting for 
early changes

High molecular specificity [19]

Pathomics (WSI + DL) Digital histology Predict malignant transfor-
mation from biopsy

High predictive power, inter-
pretable histologic features

[23,24]

PET Radiomics ^18F-FDG PET Metabolic heterogeneity → 
risk stratification

Functional imaging adds biol-
ogy

[21]

Delta-radiomics (tem-
poral)

Serial imaging Early detection of dynamic 
change

Captures lesion evolution [22]

Conclusion
Radiomics and machine learning offer objective, non-invasive 

approaches for early detection and risk stratification of OPMDs 
with the potential to reduce OSCC incidence via earlier interven-
tion. Progress in imaging modalities, software platforms, federated 
learning and explainable AI is accelerating translation. Realizing 
clinical impact requires rigorous external validation, standardized 
workflows, multi-center collaboration, and prospective demon-
stration of improved patient outcomes.
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