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A recent scientific review of literature has highlighted the importance of novel actors in nutritional science. Among these glycans 
have come to the forefront due to recent advances in glycobiology and glycochemistry. Moreover, the epidemiologic, diagnostic (case 
reports and case series) and literature (expert opinions) data regarding blood type diets (BTD) have been closely associated with 
glycans. Indeed the presence of oligoglycans in all food sources has been confirmed. These special carbohydrates are present in the 
form of glycoconjugates (glycoproteins or glycolipids) in and on the surface of all the cells (glycocalyx) of all organisms that we eat. 
During digestion they remain intact through the GI tract as we lack the enzymatic repertoire of the human body to unbind their 
particular linkages. The oligoglycans, which should not be confused with normal fibres, are then either absorbed in the bloodstream, 
where they are recognized by the immune system, or interact with the surface of GI epithelial cells. The result is that through protein-
carbohydrate interactions (PCI) or through carbohydrate-carbohydrate interactions (CCI), dietary glycans can generate appropriate 
biochemical cascades that induce a tolerance or immune/inflammatory response. Because the ABO epitopes have been encountered 
on all human cells, not just erythrocytes, and, based on the different biotypology (A, AB, B, and O), ABO antigens impose morphic 
changes in the spatial distribution of the glycans on the glycocalyx (lipid rafts and clustered saccharide patches). Dietary glycans can 
hence interact with human lectins and glycoproteins through PCI and CCI in and ABO dependent manner, thus, eliciting contrasting 
responses. Glycobiology and glycochemistry have paved the way to understand the biochemical interactions between glycans and 
human lectins on different ABO type cell glycocalyx.

ABH: A, B, O (or H) and AB Blood Type; ABO: A, B, O and AB 
Blood Type; APC: Antigen-Presenting Cells; CBP: Carbohydrate 
Binding Proteins; CCD: Cross-Reactive Carbohydrate Determinants; 
CCI: Carbohydrate-Carbohydrate Interactions; CFG: Consortium of 
Functional Glycomics; CRD: Carbohydrate-Recognizing Domains; 
ECM: Extracellular Matrix; EGFR: Epithelial Growth Factor Re-
ceptor; FHS: Food Hypersensitivity; FOS: Fructooligosaccharides; 
GAG: Glycosaminoglycans; GBP: Glycan-Binding Proteins; GEM: 
Glycolipid-Enriched Membrane; GOS: Galactooligosaccharides; 
GPI: Glycosylphosphatidylinositol; GSL: Glycoshingolipids; HBGA: 
Histo-Blood Group Antigens; HMO: Human Milk Oligosaccharides; 

Historically and traditionally, nutritional sciences have concen-
trated on the major classes of macronutrients and micronutrients 
to define food composition, quality and human nutritional require-
ments [1]. The carbohydrates class of macronutrients is generally 
divided into simple (short chains), complex (long chains of essen-
tially glucose) and fibers (tough or not easily digestible sugars) [2]. 
Most of the attention concerning fibers (either soluble or insoluble 
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IgX: Immunoglobulin A, E, G, and M; Le: Lewis Blood Type; PCI: 
Protein-Carbohydrate Interactions; PG: Proteoglycan; PPI: Pro-
tein-Protein Interactions; PRR: Pattern Recognition Receptors; 
Sias: Sialic Acids.

Citation: Marcello Menapace. “ABO Blood Type-Food Relationship: The Mechanism of Interaction between Food and Human Glycans”. Acta Scientific 
Nutritional Health 3.2 (2019): 03-22.

Abbreviations



non digestible carbohydrates) has been on their principal role as 
bulking agents in laxation the regularization of intestinal transit 
and as food for our gut microbiota [3].

But recently, in the last 30 or 40 years, new sciences have 
emerged (glycobiology, glycomics and glycochemistry), which have 
profoundly changed our view of the role of small or long chains of 
non-digestible carbohydrates, called glycans, in cellular biology [4].

On account of the vast literature accumulated in the last decades 
concerning these new sciences [5-7], a new paradigm has emerged 
where food glycans may contribute extensively to our health. On 
this regard, a recent article has been published highlighting the in-
teractions between food glycans and endogenous lectins [8]. 

Even more interestingly, it has been hinted that glycans are 
linked to the histo-blood group antigens (HBGA) so intimately 
that this phenomenon may explain the success of blood type diets 
(BTD). The BTD essentially correlates together one’s blood pheno-
type and the kind of food that one should eat [9]. As it was first pro-
posed by D’Adamo in 1996, eating foods that are compatible with 
one’s blood type will have beneficial effects on the body which are 
not limited to reducing body weight [9,10]. 

Around the world the BTD has been met with mixed reactions 
by the general public and researchers or scientists, Some have ex-
perimented successfully with it [11,12], while others have criti-
cized its results, depending on the outcome they measured [13]. 
Whatever the case, there is a fundamental mechanism that links 
BTD with health effects that has recently been uncovered: the ubiq-
uitous glycans.

This brief review shall elucidate such mechanism with state-of-
the-art scientific and literature knowledge.

Glycans are carbohydrate structures composed of various sac-
charide molecules [14]. Particularly, it is important to consider the 
structure of glycans. Essentially, glycans encompass all forms of 
carbohydrates but their multifaceted branching and linkage type 
make them quite ambiguous to define [15]. Glycans that are under 
contention here are oligosaccharides in the form of N- and O-linked 
glycans, and free (unbound) of similar structure. 

Glycans
Glycan Interactions 

If we do not consider the most abundant biopolymers in na-
ture (cellulose, chitin and glycosaminoglycans [GAG]), we are left 
with N-glycans, O-glycans, and glycosphingolipids [16]. While the 
major sources of carbohydrates in nature are dimers or other 
higher polymers of glucose (sucrose, trehalose and starches) with 
α-glycosidic linkages [17,18], glycans are oligomers of different 
monosaccharides, often linked with β-glycosidic bonds [19].

Glycans are stereochemically-complex biomolecules [20]. Be-
cause of their unique chemical properties, glycans have unsur-
passed structural variability and changeability beyond their sim-
ple linear sequence [21]. The frequent occurrences of branching 
and site-specific modifications [22,23], allow to behave biochemi-
cally in several different ways [24]. Apart from heterogeneity, 
another extraordinary property of glycans is their multivalency. 
Multivalency is the capacity of multiple glycans to enhance bind-
ing affinity and specificity with their relevant ligands [25]. The ef-
fect of glycan‐specific multivalency is fundamental to understand 
the important roles glycoconjugates play in the innate immune 
response, adhesion, or receptor‐mediated signal transduction 
events [26]. Polyvalency requires a special spatial distribution of 
glycans to interact with their ligands and is studied by glycomi-
metics [27]. Glycomimetics allows for the planning and synthesis 
of glycan mimicking molecules for therapeutic purposes [28]. In 
figure 1 the highly variable linkage points of galactose sugar resi-
due are shown.

Figure 1: Galactose (Gal) [PubChem CID: 6036].

Carbohydrates can be divided into digestible and indigestible 
carbohydrates [29]. Indigestible carbohydrates, or non-digestible 
carbohydrates (NDC) include crude fiber, nonstarch polysac-
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charide (NSP), soluble dietary fiber (SDF), insoluble dietary fiber 
(IDF), and resistant starch (RS) [30]. Sometimes, indigestible car-
bohydrates are equated to dietary fiber (DF). In this view, DF com-
ponents are non-starch polysaccharides (NSP) and RS [31]. The 
main carbohydrates included in human diet are starches. RS are 
known to resist digestion in the upper GI tract [32]. RS are complex 
carbohydrates and polymers of glucose known to modify the com-
position of gut microbiota [33]. DF do not possess either α [1,4] or 
α [1,6] glycosidic bonds between glucose moieties and are hence 
not hydolysable by the human digestive enzymes [34]. DF or NDC 
can be metabolized only by the microbiota in the cecum and colon 
[35]. There are many types of DF but all are essentially carbohy-
drate polymers with 10 or more monomeric units, which are not 
hydrolyzed by the endogenous enzymes [36]. 

Glycans have in common with DF the non-hydrolizability of 
their glycosidic bonds. Indeed, glycans cannot be degraded by 
α-amylases (human digestion enzymes) [37]. This occurs both be-
cause of β- and α-glycosidic bonds with non-glucose sugar residues. 
Given the limited amount of glycoside hydrolases (GHs) and poly-
saccharide lyases (PLs) encoded by human genome, DF and glycans 
are not digestible [38]. Human GHs comprise enzymes capable of 
hydrolysing only, starch, lactose, maltose/trehalose (as dimers or 
trimers of glucose) and possibly chitin [39]. In figure 2, the differ-
ences between DF and glycans are visually reported.

Glycans are recognized by glycan-binding proteins (GBPs), also 
called lectins [40]. Lectins play a pivotal role in many different as-
pects of the physiology (as they are naturally present in the human 
body), including the immune defence [41]. This is accomplished 
through their ability to decipher glycan-containing information 
into a myriad of cellular responses [42].

Lectins are carbohydrate-specific reagents and biological rec-
ognition molecules [43]. Lectins are ubiquitous (in nature) carbo-
hydrate binding proteins (CBP) [44]. GBPs may contain multiple 
carbohydrate-binding sites (or domains, CBD, that is, are di- or 
polyvalent) [45,46]. GBPs preferentially recognize (through their 
carbohydrate-recognizing domains [CRD]) carbohydrate complex-
es protruding from glycolipids and glycoproteins, or present on the 
ECM, binding to them with low affinity protein: carbohydrate in-
teractions (PCI, usually in the mM range) [47]. The CBPs on GBPs 
typically accommodate glycan ligand motifs made up to a tetrasac-
charide in size [19].

As shown in figure 3, many glycans with different structural mo-
tifs can still react with high affinity with human lectins. In table 1, 
some of the antigens on the glycan array that have been evidenced 
as high affinity ligands, are listed with the IUPAC nomenclature to 
define their molecular composition. 

Graphical representation of the results of a lectin-glycan binding 
test using a glycan array (PA_v5). As evident, many glycans linked 
to the glycan array react strongly (high affinity) with Galectin-3, a 
few of which are structurally reported in Table 1. All glycans, with 
PCI signal above 250, are considered as having high affinity.

A lectin-glycan binding test (Glycan-GBP Interaction Core (H) 
Data) using a glycan array (PA_v5) was performed on a human GBP 

Lectins

Figure 2: Fibres and glycan antigens (graphing tool used is 
GlyTouCan Builder).

An example of the many different linkage points on a hexose 
sugar: a total of ten possible bonds.

The first three CFG notated structures represent starch (amy-
lopectin, because of the branching, although the branching occurs 
every 20-30 residues of glucose [17], cellulose (linear like amylose 
but with β-glycosidic bonds) and galactooligosaccharide (GOS), re-
spectively; while the last one is a N-glycan (more precisely a syal-
ylLewis X terminal on a N-core glycan type II (all generated with 
GlyTouCan Builder, available at https://glytoucan.org/Structures/
graphical, and notation taken from the Consortium of Functional 
Glycomics, available at www.functionalglycomics.org). The starch 
and fiber molecules are obviously longer in length [16] but have 
been shortened for easier display.
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Figure 3: Galectin-3 glycan binding specificities (taken from CFG 
website: cfg_rRequest_2564).

molecule (Galectin-3), according to protocol cfgPTC_242 (and pub-
licly available at http://www.functionalglycomics.org). The table 
represents some of the high affinity ligands (with signal greater 
than 250) for the human protein galectin-3, showing different gly-
cans have similar binding strengths. #Sp indicates the linkage point 
of the glycan on the microarray. The diversity of the first two or 
three sugar residues of each glycan should be noted, including the 
various glycosidic linkages (a1-3 or b1-4) between each saccharide: 
notwithstanding this heterogeneity (indeed microheterogeneity 
[48] all glycans react strongly with the given lectin. 

Every cell’s surface is literally coated with carbohydrates in 
the form of glycoproteins, with oligosaccharides (sugar residues), 
proteoglycans, with polysaccharides, and glycolipids (as one of the 
two main forms of glycoconjugates) [49]. This structure is called 
the glycocalyx and is responsible for a vast number of biological 
functions [50]. Among the various functions are cellular and self 
or non-self-recognition, to signalling or immune regulation and ho-
meostasis [48].

Moreover, the outer layer glycocalyx interacts with the extra-
cellular matrix (ECM) [51,52]. The ECM is a meshwork of fibres 
composed primarily of glycosaminoglycans (GAGs, such as hepa-
rin, heparan sulphates, chondroitin sulphates and hyaluronan) and 
proteoglycans (PG, such as, syndecans and glypicans, among many) 
[53,54]. With this plethora of interconnections, the ECM has many 
yet undiscovered properties of inter- and intracellular signalling 
regulation and functions [55,56].

There is evidence for a myriad of roles for lectin-carbohydrate 
interactions [44]. Important functions include intracellular sig-
nalling pathways that regulate the immune response [57,58], and 
modulating roles in many different biological processes [59]. Over-
all, these roles suggest that lectins and sugars mediate their ef-
fects through non-redundant pathways [60]. Moreover, multivalent 
binding between carbohydrate and proteins increases the avidity 
of cell signalling, molecular recognition and inflammations [61].

Furthermore, cell membranes are starred with glycoshingolip-
ids (GSL), which maintain their fluidity and freedom of movement 
[62-64]. Consequently, glycans, glycolipids and GPI (glycosylphos-
phatidylinositol) proteins are free to move and reorganize spa-
tially on the membrane [65]. GSL can reorganize (or self-associate) 
themselves spatially on the cell surface through protein-carbohy-
drate interactions (PCI) or carbohydrate-carbohydrate interactions 
(CCI) to form ‘lipid rafts’ [66]. Lipid rafts are indeed are glycolipid-
enriched membrane microdomains of submicron length [67]. Many 
proteins with raft affinity are all heavily glycosylated [24]. These 
proteins can laterally segregate in fluctuating nanoscale assemblies 
(membrane subcompartmentalization) of sphingolipid, cholester-
ol, and proteins [68,69].

Lipid rafts, although fiercely contested [62], consist of clusters 
of structural proteins, enzymes, and signalling receptors, among 
other protein types, regulate several biological functions [70]. 

Glycan sites
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Description of the glycan epitope Signal SEM(PA)
Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb?#Sp0

637.8807 32.587845

GlcNAcb1-3Galb1-4GlcNAcb1-
3Galb1-4GlcNAcb#Sp0

626.43225 41.02542

Fuca1-2Galb1-4GlcNAcb1-3Galb1-
4GlcNAcb1-3Galb1-4Gl cNAcb#Sp0

623.521 27.160454

Gala1-3(Fuca1-2)Galb1-4GlcNAcb#-
Sp0

585.3492 22.520658

F u c a 1 - 2 ( G a l N A c a 1 - 3 ) G a l b 1 -
4 G l c N A c b 1 - 3 G a l b 1 - 4 G l c N A c b 
1-3Galb1-4GlcNAcb?#sp0

503.503 18.691166

Fuca1-3(Fuca1-2(GalNAca1-3)Galb1-
4)GlcNAcb1-3GalNA c??#sp14 

464.44864 14.128436

G l c N A c b 1 - 3 G a l b 1 - 4 G l c N A c b 1 -
3Galb1-4GlcNAcb1-3GalNAc a?#sp14 

397.36057 23.452572

Table 1: Primary Screen Data extract for human Galectin-3 micro 
array (cfg_rRequest_2564).



Events such as lateral diffusion of membrane proteins and lipids, 
adherence to the extracellular matrix [71], and signalling events 
are just a few of the many different biological roles covered by lipid 
rafts [72]. Such rafts could play an important role in many cellular 
processes including in the immune system [73]. These signalling 
platforms are essential to immune-mediated signal transduction, 
membrane trafficking, cytoskeletal organization, and pathogen en-
try [74,75]. 

An example of a lipid raft in formation is shown in figure 4.

Figure 4: Formation of a Lipid Raft [8].

The formation of a lipid raft is effected by the presence of gly-
cans that interact with other carbohydrate moieties on glycolipids 
and glycoproteins. Glycoproteins move and coalesce into micro-
domains where they are able to interact differentially with other 
glycoproteins or glycolipids based on the particular HBGA epitopes 
that are constitutionally present.

Moreover, special immune lectins, galectins, may bind to and 
cross-link multivalent glycoproteins and glycolipids on the cell sur-
face in appropriately formed lipid rafts [76]. Galectins therefore 
are not evenly distributed within the glycocalyx but are gathered 
in patches [77]. This phenomenon may lead to formation of stable 
microdomains and lattices that initiate signal specific pathways 
[78,79]. 

The formation of these lipid raft assemblies is known to be re-
sponsible for initiating many signal transduction pathways, includ-
ing those for immune cell activation [80]. Finally, the glycocalyx and 
lipid rafts have emerged as an important participant in modulating 
inflammation, infection and other immune or allergic processes 
[73,81-83]. 

The characteristics of glycans as just discussed in intimately 
linked to the ABO blood group system. This is because the ABO 
group determinants are glycans [84]. The ABO blood group is the 
most important blood group system in transfusion and transplan-
tation medicine [85,86]. The A, B, O blood group systems were first 
described by Karl Landsteiner in 1900 and the AB blood group was 
later described by Von Decastallo and Sturli in 1902 [87]. As glycans, 
the ABO epitopes star glycoconjugates on and inside the cell mem-
brane. Indeed, the human ABO blood group antigens, are complex 
terminal glycan structures present on glycolipids and glycoproteins 
[88]. ABO phenotype glycans are not found just on red blood cells 
but occur also on both cell surfaces and plasma protein [89]. Blood 
group antigens are alloantigens in humans, and are present not just 
in blood or plasma, but also on epithelial cells [87]. Furthermore, 
ABO glycotopes are found expressed on glycolipids, glycoproteins, 
and mucins of the GI tract [90]. Actually, they are expressed on cell 
surface GSL or glycoproteins of a variety of other human cells and 
tissues (e.g. bronchopulmonary, skin and urogenital epithelial cells, 
neurons and vascular endothelium), and in various body fluids and 
secretions [86,91-95]. Such expression is also dependent on secre-
tor status of the individual [96].

The ABO blood group system comprises 4 blood groups: O (or 
H), A, B and AB [87]. Three variant alleles (A, B, and O or H) of a 
single gene on chromosome region 9q34.2, the ABO gene, deter-
mine a person's blood type by encoding two glycosyltransferases 
(GT) with different substrate specificities [97]. The ABO gene is lo-
cated on chromosome 9 and has three alleles consisting of 7 exones 
distributed over 18 kb of genomic DNA [98]. Blood group A and B 
GT (ATs and BTs), encoded by ABO gene (A and B are codominant 
alleles, while O is recessive), transfer an N-acetyl-d-galactosamine 
(GalNAc) and a d-galactose (Gal) to the same acceptor substrate H 
substance [94,99]. The acceptor substrate (H antigen: Fuc alpha 
1–2 galactose) remains without further modification because the 
transferase encoded by the O allele is non-functional [100]. Hence, 
the ABH antigens are not primary gene products but they are the 
enzymatic reaction products of GT enzymes [101]. There is also a 
very rare genetic polymorphism, named Hh, allowing for a lack of 
H antigen: these individuals are known as hh or Oh or Bombay type 
[102].

The ABO system results from polymorphism of the terminal 
ends of complex carbohydrate structures (type 1 or lacto [Galβ1-
3GlcNAc] and type 2 or neolacto [Galβ1-4GlcNAc] core chains) of 
glycoproteins and glycolipids [86,91], as shown in figure 5.

ABO epitopes

Citation: Marcello Menapace. “ABO Blood Type-Food Relationship: The Mechanism of Interaction between Food and Human Glycans”. Acta Scientific 
Nutritional Health 3.2 (2019): 03-22.

07

ABO Blood Type-Food Relationship: The Mechanism of Interaction between Food and Human Glycans



The Type I glycan unit structure, as shown here and in subse-
quent figures, is exemplified by β1-3 glycosidic bonds, different 
with respect to type II chains (LacNAc) which form β1-4 glycosidic 
linkages with a terminal GlcNAc [36].

These are likely to explain the many studies on associations 
between ABO blood group and various types of disease from neo-
plastic to cardiovascular disorders [95,103]. Such diseases include 
several cancer types [86,104,105], peripheral artery disease [106], 
thrombotic vascular disease [93], coronary heart disease [107], 
peptic and duodenal ulcers [108], among a wide array of other hu-
man diseases [94]. 

Many more studies highlighted the possible influence of the 
ABO blood group on the severity of several infections, including but 
not limited to:

 

Figure 5: Blood group antigen type I [developed  
with GlyTouCan Builder].

o	 Schistosomiasis or bilharzia [109],
o	 Malaria [110],
o	 Rotavirus type A, B and C [111],
o	 Dengue virus [112],
o	 Urinary tract infection [113].

These associations have been given scientific validation through 
extensive research in infectious disease, tumor immunology, and 
membrane chemistry [101]. Furthermore, it has been known for 
quite some time the existence of a modulatory role of ABO blood 
group antigens on several inflammatory and adhesion molecules 
[104], receptor ligand interactions [110]. Indeed, a close link has 
been found between ABO antigens and systemic inflammation 
response modulating inflammatory markers, including tumor ne-
crosis factor-alpha (TNF-α) and soluble intercellular adhesion mol-
ecule-1 (sICAM-1) [103].

Well-documented association between the distribution of ABO 
blood group antigens and plasma Von Willebrand factor (VWF) and 
coagulation factor VIII (FVIII) levels have been recognized [92,104]. 
This may result from the influence of ABO on the life-span of vWF 
due to ABO-modified N- and O-glycans on the vWF protein [107]. 
Indeed, plasma levels of vWF are approximately 25% to30% lower 
in group O subjects than in non-O individuals [93]. 

Although the exact mechanisms of the reported associations 
between blood group antigens and disease, are yet to be fully elu-
cidated what is currently known provides some intriguing clues 
[101]. Nevertheless, the ABO blood types remain important self-
antigens with vast implications in immune tolerance [114].

The ABO blood group is intimately linked to another blood 
group of carbohydrate origin: the Lewis (Le/le) blood type [115]. 
The H/h, ABO and Lewis epitopes form the human HBGA [116,117]. 
The secretor phenotype (the ability to secrete A, B and H antigens 
into body fluids, like sweat, semen and also saliva) is determined 
by the fucosyltransferase 2 enzyme (FUT2), encoded by Se/se gene 
[105,118]. Serologically, Lewis status (Le/le) is defined by the ex-
pression of two main antigens as a result of the activity of the FUT3 
enzyme: Lea and Leb in a type I chain and Lex and Le y in a type 
2 chain [119]. Therefore, the following Lewis phenotypes are pos-
sible: the non secretor Le(a+b-) [or Lea, Le and se/se], the secret or 
Le(a-b+) [or Leb, Le and either Se/Se or Se/se] and the Lewis nega-
tive Le(a-b-) [le and Se/Se, se/se or Se/se] [101,120]. An individual 
can be a secretor (Se) or a nonsecretor (se) independently to its 
ABO or Lewis blood classification [121]. FUT2 is the key enzyme 
to initiate the secret or pathway [117]. Figure 6 shows a few Lewis 
antigens and their similarities with ABH: the additional fucose in 
α1-4 (in type 1 chains) or α1-3 (in type 2 chains) linked to GlcNAc, 
distinguishes the Lewis from ABO antigens.

Histo Blood Group Antigens
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Figure 6: Similitude between Lewis and ABH Blood  
group antigens.

All of the above antigen are Lewis determinants (from left to 
right) [122]: first line includes Lewis Y (structurally similar to H 
antigen but with the GlcNAc fucosylated in α1-3), B Lewis Y (simi-
lar to the B determinant); second line Lewis X (precursor of Lewis 
Y), A Lewis Y (similar to A antigen), third line Lewis A (precursor of 
Lewis B), B Lewis B (similar to B antigen), fourth line Lewis B (simi-
lar to H antigen with the additional fucosyl group on the GlcNAc 
residue), and A Lewis A (similar to A antigen). First two lines are 
Type 2 chains, last two lines are Type 1 chains.

Indeed, apart from red blood cells, the ABO and Lewis glycoto-
pes (HBGA) are highly expressed on platelets, leukocytes, plasma 
proteins and on the surface of epithelial cells of the gastrointestinal 
[123], bronchopulmonary, and urogenital tracts and bodily secre-
tions [101,124]. 

HBGAs are bound to glycolipids (GSL [123]) and glycoproteins 
alike [124].

HBGA are recognized and bound by microorganisms such as 

o	 Vibrio cholerae, Pseudomonas aeruginosa and Escherichia 
coli [125],

o	 Human norovirus [117],

o	 Rotavirus [126],

o	 Lagovirus [127],

o	 Candida albicans [124],

o	 Helicobacter pylori [128]

o	 Agents causing other infectious diseases [129].

There are of course other blood group systems identified for a 
total of 32 [113]. But the only other carbohydrate antigen systems 
(also closely linked to ABH and Lewis) are the Forssman and the 
globo series (P antigens, I or Li, and Globoside) [101]. All others 
are non-carbohydrate-based antigens, i.e., enzymes or proteins 
[130]. These other five blood glycan antigen are linked essential-
ly only to glycolipids especially GSL and have rare polymorphism 
[131]. The most common phenotypes are P1 and P2, always in-
clude the P antigen (Gb4 or Globoside) and paragloboside which 
can both be extended to manifest ABO glycans [132]. The Forss-
man glycolipid synthases (FSs), isogloboside 3 synthases, and α1,3-
galactosyltransferases of the α1,3-Gal (NAc) transferase family are 
encoded by closely ABO-related GBGT1, A3GALT2, and GGTA1 genes, 
respectively [99]. All these antigens, being found on GSL, can be fur-
ther elongated to form ABO like terminals which may be fundamen-
tal for lipid raft formation [122,131,133].

ABH antigens can modulate cellular interactions without be-
ing a direct ligand themselves [134]. ABO glycotopes can stabilize 
other glycans on the fluid cell surface in clusters (called “clustered 
saccharide patches”, as closely spaced oligosaccharides) thereby 
making them more (or less) accessible to relevant GBPs [135]. The 
stabilizing effect of these clusters is exerted by ABH blood group 
antigens through CCI with other glycans, forced into unusual con-
formations, without being directly involved or being the primary 
target of GBPs [136]. Hence, diverse glycans can differentially be 
recognized by GBPs given the special spatial conformation (clus-
tered saccharide patches) facilitated by ABH determinants [137].

Causative agents such as haptens (non-immunogenic com-
pounds that form active complexes with an immunogenic carrier) 
are deemed as one of the most important risk factors related to the 
impact of food on the body [138]. In literature, epitopes and hap-

Food and microbiota
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tens are always implicitly assumed to exclusively consist of amino 
acids, but glycan epitopes and classical haptens are important anti-
body binding epitopes [139-142].

Carbohydrate structures of various plant foods are source of im-
munological cross‐reaction between allergens [143,144]. Most are 
in the form of glycoconjugate N-linked carbohydrates [106], called 
cross-reactive carbohydrate determinants (CCD) [145,146]. Others 
have oligomannosidic, hybrid or complex type structures, and dis-
play immunomodulatory, very weak allergic [103] or non-allergen-
ic immunogenic properties [147,148]. These glycans can either be 
in free (unlinked) form [108] or be present on glycoconjugates such 
as (glyco)protein allergens [142,149].

Moreover, most food antigens possess carbohydrate moieties 
similar to HBGA [150,151]. HBGA are known to be displayed on 
glycoproteins and glycolipids in diverse food sources such as oys-
ters, clams, fruits and vegetables, including lettuce [152-154]. It 
is also likely that glycans similar but not identical to HBGA, here-
with called HBGA-like, may display phisico-chemical and biological 
properties akin to HBGA [155-157]. Since ABO specific antibodies 
are present in humans [114,158], it is also highly likely that HBGA-
like epitopes in food may trigger unspecified immune responses.

ABO and Lewis (HBGA) epitopes expressed in the GI tract ac-
tually shape the composition of gut microbiota [159]. Being ex-
pressed on intestinal epithelial cells (IECs), the ABO glycans are 
potential receptors for non‑pathogenic and pathogenic microor-
ganisms influencing immune responses [95]. Virus also can dif-
ferentially recognize HBGA displayed on IECs and on mucins in 
secretor individuals [160]. Human gut microbiota has developed 
elaborate, variable and sophisticated systems for the sensing, cap-
ture and utilisation of host and dietary glycans [2]. Indeed host and 
dietary glycans serve as food source for intestinal bacteria [161]. 
Some gut bacteria can take up only a narrow range of glycan spe-
cies, whereas others can digest many different complex glycans 
[162]. This occurs because of the specificity of the GHs and PLs 
produced by each bacteria’s genome [163]. Hence, survival of mi-
crobiota members from diverse genera depends on their ability to 
degrade host and dietary glycans that cannot be metabolised by 
the host [164]. Host glycobiology therefore affects gut microbial 
composition as microbes being adapted to use HBGAs differentially 
as a nutrient [165,166]. As earlier introduced, non-digestible com-
plex polysaccharides and dietary glycans are key determinants of 
microbial populations in the colon [167]. Consequently, elaborate 

interactions form between dietary glycans, the host, and gut mi-
crobes that vary broadly in the types of glycans intestinal bacteria 
are capable of metabolizing [168]. 

The human gut microbiota is so important to health and disease 
that is sometimes referred to as an ‘organ’ as it performs functions 
analogous to systemic tissues [2]. The commensal bacteria play 
relevant roles in host physiology and the imbalances in its com-
position, referred to as dysbiosis, have been linked to certain dis-
ease conditions [160]. Altered gut microbiota (“dysbiosis”), often 
containing enteropathogens, triggers a subclinical constellation of 
intestinal pathologies from inflammation to increased risk of life-
long co-morbidities [169]. A symbiotic gut microbiota may be im-
portant in determining cardiovascular disease risk [170]. Indeed, 
our microbiota has been linked to intestinal health, immune func-
tion, and to complex disease phenotypes such as obesity and insu-
lin resistance [171]. 

The same strategies of cell-adhesion are also used by pathogens 
like trans‐species O‐GalNAc glycosylation of the parasite’s proteins 
[172]. Infectious agents can bind host glycans with their lipopoly-
saccharide surface glycans through CCI [173]. Pathogenic invasion 
of the host’s enteric environment may then contribute to continu-
ous dysbiosis, which leads to a cycle of increased risk in cognitive 
impairment, type 2 diabetes, and cardiovascular diseases [169]. 
This underlines important role of commensal bacteria in the gut 
barrier integrity (tight junctions), by modulating inflammation and 
metabolic functions [174]. Gut dysbiosis and altered intestinal bar-
rier integrity may be further to anxiety and depressive disorders 
[175].

Hence, the human gut microbiota plays a central role in glyco-
biology and in the influence of glycans on health and innumerable 
diseases.

Since the presence of glycans on proteins is believed to fine-tune 
the function of the protein [130], ABO distinctive antigens can eas-
ily be foundational in modulating the glycoconjugate’s function.

A first theoretical framework of BTD was based on the benefi-
cial or detrimental effects of lectins in foods, based on one’s ABO 
type [9,10].

The original mechanism for the ABO-food relationship focused 
on the presence of lectins in foods, being widely distributed in 

The mechanism
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plants [176]. These are generally very resistant to heat and diges-
tion [177]. Dietary lectins act as GBP which identify to specific epi-
topes on surface glycoproteins (or glycolipids) on the glycocalyx of 
several cell types including erythrocytes or lymphocytes [178]. 

Several GBPs are present in nature and have been recovered in 
diverse food sources, and are widely distributed among plants and 
animals [179].

There are several reasons why the classical mechanism of ABO-
food interaction has been proposed as being originated from food 
lectins [180].

1.	 Many lectins present in the diet resist heat and digestion, at 
least partially [47, 181] (and remain in active form through-
out the colon being recovered in the faeces of animals and 
humans [182-185];

2.	 These lectins can resolve various glycoforms with different 
degrees of avidity, through the standard PCI [122, 186,187];

3.	 The lectin showed polyvalent behaviour (the glycoside 
cluster effect, both multiantennary or simple and high-den-
sity polyvalent or complex) [188,189];

4.	 The binding of lectins is inhibited by most high-density 
polyvalent oligosaccharides-containing glycoproteins and 
their cryptoforms, masked by similar sugar residues such 
as HBGA or sialic acids [119].

While this explanation is capable of explaining local enteric in-
flammation and toxicity [178,183], it is nevertheless incomplete. 
Since lectins are proteins, it can be quickly advanced the critique 
that proteins are digested, even incompletely, thus loosing their 
glycan binding capacity.

A novel mechanism is required.

The novel mechanism proposed involves the presence and ac-
tion of oligomeric sugar moieties present on the glycoconjugates of 
the various food items [8]. Given the incommensurable intricacy of 
the immune system, the present is an incomplete, fragmentary and 
imperfect exposition of the evidenced pathways of dietary glycan 
interactions.

These special oligoglycans, free or as glycoconjugates inside and 
on the surface of all the cells of all foodstuffs remain intact through 
the GI tract [143]. Since we lack the enzymatic repertoire to unbind 

The interaction

their particular linkages [164,190], they cross the whole GI tract up 
to the colon, if not uptaken. Indeed, humans enzymes are capable 
of degrading only a few glycosidic linkages present in a subset of 
carbohydrates, the digestible carbohydrates [34]. The oligoglycans 
should not be confused with normal fibres although they share the 
same type of beta glycosidic bonds [191]. These NDC can then be 
broken down through colonic bacterial fermentation to form ben-
eficial short chain fatty acids (SCFA) [35]. 

And/or NDC/glycans are then either cross the intestinal barrier 
through tight junctions (TJ) [174] or come in contact intact (un-
digested) with intraepithelial T cells (IETs) or dendritic cells (DC) 
[192]. Materials can pass through the luminal side of the intestinal 
barrier either through cell membranes of IECs or the transcellular 
and paracellular spaces between them (TJ) [193]. Permselective, 
active transport of nutrients across the TJ is regulated by inflam-
mation or SCFA produced by beneficial bacteria [194]. Thus, gly-
cans enter the bloodstream, as much larger molecules can in dys-
biotic or inflammatory conditions [195-197]. Once in the blood 
(through the portal vein [198]) bypassing TJs [175], they can be 
recognized by lectins of the immune system (galectins, selectins 
etc.) [42, 135,199,200]. On the one hand, IETs have appropriate 
receptors that recognize glycans and generate responses to such 
antigens [201]. Responses include the production of highly spe-
cific immunoglobulin A (IgA) antibodies against bacterial glycans 
[202]. Moreover, commensal microbes, through SCFA, can shape 
the mucosal immune system by regulating several types of T cells 
[203]. The gut normally produces gram quantities of IgA, which 
is presumed to protect the gut from pathogen attack [204]. IgAs 
have a remarkable capacity to recognise and bind several glycan 
motifs [205]. On the other hand, antigen presenting cells (APCs) 
such as DCs are capable of recognizing these antigens and initiated 
immunologic or immune tolerance reactions [144,148,206]. APCs 
possess lectin receptors which are potent antigen-uptake receptors 
with specificity for glycan structures [207]. Once glycans are recog-
nized by these glycan-binding receptors on DCs, modulation of in-
terferons and other cytokines occur to initiate immune responses 
[208]. Owing to their small size and to the sharing behaviour of mu-
tualistic bacteria, glycans could be accessed by IECs and IETs [209]. 
This phenomenon is known to occur with xenoglycans (glycans 
that are extraneous to humans) being metabolically incorporated 
into human cells [210].

And/or glycans can interact with the surface of IECs, through 
PCI and CCI [173, 189], that is with glycans of glycoconjugates and 
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with polylactosamine-containing glycans, abundant at the ECM 
[211].

And/or oligoglycans can interact with the human lectins, such 
as galectins [42], soluble, immobilized on the ECM, and/or bound 
to the cell membranes of IECs or macrophages [212,213]. Galec-
tins can trigger distinct signaling programs and modulating im-
mune cell activation, differentiation, recruitment and survival and 
inflammation [42, 214]. Interestingly, there may be links between 
galectins, IgA and T cells for the maintenance of gut homeostasis 
[215]. Galectins are thus considered pleiotropic factors as they 
not only provide innate immunity with an arsenal against bacte-
rial molecular mimicry, but are also regulators of a wide variety of 
biological processes [216]. Altogether, galectins function as glycan 
self/non-self recognition receptors and be effector factors in innate 
immunity, leading to glycan immune tolerance reactions [211,217]. 

Overall, these actions generate appropriate biochemical cas-
cades that induce a tolerance or immune/inflammatory response, 
through various known mechanisms [58,122,218-221]. By keep-
ing both the innate and the adaptive immunity challenged with 
dietary glycans, a continuous state of inflammation is perpetrated 
[214,222]. Dietary glycans may act as CCD, bringing about Ig me-
diated immune responses [223,224]. Continuous uptake of wrong 
dietary glycans may initiate chronic inflammation [225]. 

To this multifaceted picture (though still partial and piecemeal), 
ABO blood typology should now be added. Since the ABO epitopes 
have been encountered on all human cells, the different biotypol-
ogy (A, AB, B, and O) impose morphic changes in the spatial dis-
tribution of the glycans on the glycocalyx [134,136]. Given their 
stereochemistry, glycans may form highly specialised and selective 
interactions that can play key roles in a wide variety of biological 
processes [20,173]. The resulting ABO-guided lipid rafts and clus-
tered saccharide patches will interact differently through their CCI 
with food glycans, thus, eliciting contrasting responses [137,226]. 
Integrins are reorganized in these patches altering their activation 
state and influencing not only their ability to interact with ECM 
ligands but also their synergistic downstream signaling [52]. Gly-
cobiology and glycochemistry have paved the way to understand 
the biochemical interactions between glycans and human lectins 
on different ABO type cell glycocalyx.

 The restricted presentation of membrane-associated glycans is 
due to orientational constraints imposed on the glycolipid through 
its lateral interactions with other membrane lipids and proteins 
[123].

In sum, there is bountiful evidence that food glycans can interact 
consistently and in a preordained manner with endogenous lectins 
[8].

Food glycans (like all glycans) have special biochemical prop-
erties that allow them to manifest molecular mimicry (display of 
glycan motifs resembling host glycans [216]), with HBGA [227-
229]. Dietary glycans can after ingestion interact with mono-, di- or 
polyvalent human lectins, such as ABO specific GBPs, through PCI 
or CCI [40,230].

Since galectins may bind to and cross-link with multivalent gly-
coproteins on the ECM [231], and glycoproteins and/or glycolipids 
on the cell surface in appropriately formed lipid rafts, leading to 
formation of microdomains, lattices or clustered arrays, dietary 
HBGA-like glycans may then evoke an inflammatory response 
[211,232,233]. 

Nevertheless, the result is the same: dietary glycans can cross 
the intestine barrier into the blood stream, as evidenced by food 
cross-reactivity and carbohydrate antibodies found in the blood 
[148,200,234,235].

Moreover, HBGA characteristics of the host (formerly ABO, but 
also Le/le and Se/se) influence microbiota composition [128]. The 
symbiotic relationship between ABO-differentiated microbiomes 
and the host regulate different homeostatic balances in these dis-
tinct individuals who require personalized interventions [159].

Wrong gut microbiota (dysbiosis) caused by ingestion of wrong 
HBGA glycans for that individual can alter the permeability of TJ 
and lead to unwarranted crossing of immunogenic materials trig-
gering several disorders [8, 174].

This newly proposed mechanism is not meant to substitute the 
previously confirmed ABO-food interaction (food lectins binding to 
human glycoconjugates) but to be complementary to it and extend 
it.
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As stated in a recent extensive review on glycobiology [48], 
nearly every disease process (mostly involving disordered inflam-
mation and immunity), that affects humans and other animals, per-
tain to glycans.

It is not astonishing that glycans have emerged as central players 
in nutrition and health. Nor is it astounding that the role of dietary 
glycans, either free or linked to glycoconjugates, has been missed 
until now, due to their unmatched complexity. It is not enough to 
point to lectins as a possible mechanism for BTD. Only the ubiqui-
tous presence, resiliency and uniquely varied biochemistry of gly-
cans brought to the forefront by recent advances in glycobiology 
can aid explain BTD impact on society [8].

Science is homing into the definition of the exact mechanism for 
several food hypersensitivities and slowly it will be possible to iso-
late the specific food glycan structures. Moreover, the pathophysiol-
ogy of dietary glycans responsible for CCI with HBGA and PCI with 
human lectins, is meant to be expanded and improved upon with 
newer technologies. Nevertheless, given the multiple systems in-
volved in glycobiology, a more interdisciplinary approach is needed.

Dietary glycans can hence cause inflammation or immune-me-
diated responses based on ABO, Lewis and secretor typology and 
this explains the nature of BTD. It is also acknowledged that this 
alone is incapable of completely explaining all the varied responses 
to food (food hypersensitivities) that differentiates the blood type 
A from the O, the B or the AB [236-238]. Although this is definitely 
a good starting point.

As we progress through technical advances (biophysical ap-
proaches and combinatorial glycoarrays [239]), we will be able to 
create new methods to distinguish subtle differences of microdo-
mains and thus find new PCI and CCI between glycosyl epitopes 
on glycoproteins and glycolipids [240]. The ultimate goal may be 
to identify the glycan motifs in food components responsible for 
eliciting ABO- or HBGA-differentiated immune and inflammatory 
responses.
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