

ACTA SCIENTIFIC NEUROLOGY (ASNE)

Volume 8 Issue 10 October 2025

Case Report

A Rare Case of Progressive Ataxia with Palatal Tremors

Anusha I1*, Shobana N2, Selvakumar CJ3 and Sadeeshkumar V3

¹Resident, Department of Neurology, Coimbatore Medical College, Tamil Nadu, India

²Professor and HOD, Department of Neurology, Coimbatore Medical College, Tamil Nadu, India

³Assistant Professor, Department of Neurology, Coimbatore Medical College, Tamil Nadu, India

*Corresponding Author: Anusha I, Resident, Department of Neurology, Coimbatore Medical College, Tamil Nadu, India.

DOI: 10.31080/ASNE.2025.08.0870

Received: September 02, 2025

Published: September 27, 2025

© All rights are reserved by Anusha L., et al.

Abstract

Palatal tremors are subdivided into essential (EPT) and symptomatic (SPT) forms according to clinical and etiological features. A subgroup of the SPT form has a syndrome of progressive ataxia and palatal tremor (PAPT). PAPT may be divided into sporadic and familial forms. In sporadic PAPT patients typically have olivary hypertrophy and increases signal intensity on T2-weighted MRI and progressive cerebellar degeneration. Familial form shows marked atrophy of cervical cord and brainstem with corticospinal signs, the hypertrophic olivary appearance on MRI will be absent. Few clinical features and MRI characteristics can help in differentiating familial and sporadic form even when genetic tests are inconclusive.

Here we describe a rare case of Progressive Ataxia with Palatal Tremors(PAPT) with features suggestive of familial form with inconclusive genetic tests.

Keywords: Palatal Tremors; progressive ataxia; olivary hypertrophy

Introduction

Progressive ataxia with palatal tremors is a rare neurodegenerative disease that is classified into familial and sporadic forms. The main clinical feature is palatal tremors, formerly called as palatal myoclonus. It is subdivided into essential (EPT) and symptomatic (SPT) forms. Symptomatic palatal tremors are associated with lesions in Guillain-Mollaret triangle.

Here we present a case of 43year old male presented with progressive ataxia, dysphagia, dysarthria with palatal tremors and with features suggestive of familial form of PAPT.

Case Report

Patient information

A 43-year-old man with no comorbidities, presented with 3-years history of unsteadiness of gait which was gradually pro-

gressive and 2-years history of nasal regurgitation of foods, dysarthria and 3-months history of involuntary rhythmic movements of the palate and head nodding. There was no pertinent past medical history. He also had family history of tremors and unsteadiness to his maternal grandfather which was not evaluated and he expired at his 60's due to myocardial infarction.

Clinical findings


Patient was conscious, oriented with scanning speech and bilateral symmetrical palatal tremor of frequency 140-160/min (Video 1). Uvula in midline, gag reflex normal. On spino-motor examination spasticity of all 4 limbs and brisk deep tendon reflexes were seen with normal power. Wide based ataxic gait was present with no dysmetria. Rest of the clinical examination revealed no abnormalities.

Diagnostic assesment

Investigations revealed normal routine blood analysis. TSH, antinuclear antibodies, CT thorax and abdomen, 2D-ECHO were normal. Stool examination, UGI endoscopy to rule out celiac disease was done which were normal. CSF examination and NCS was normal. MRI brain revealed mild atrophic changes in brainstem and cerebellum (Figure 1A). No olivary hypertrophy (Figure 1B).

Mild thinning of bilateral corticospinal tracts was noted in MR tractography.

Whole genome sequencing was negative. Heterozygous for uncertain significance variant in the ITPRI gene and CCDC88C gene associated with SCA 15 and 40 was seen (Figure 2). However it doesn't test for some of the relevant genes like POLG.

Figure 1: A) MRI brainT1W sagittal section showing mild brainstem and cerebellar atrophy

B) MRI T2W axial Image at medullary level which is normal.

Video 1

Intervention and follow up

Patient was treated with clonazepam, carbamazepine, trihexyphenidyl for palatal tremors. After a few days frequency of palatal tremors decreased from 140 – 160 range to 90 to 110 range. However there is no improvement in ataxia.

Discussion

Palatal tremor is an involuntary, rhythmic and oscillatory movement of the soft palate. It can be unilateral or bilateral. Palatal tremors can have huge variability of frequency (20-420 cycles/in) [1]. It is subdivided into essential (EPT) and symptomatic (SPT) forms according to clinical and etiological features [2]. EPT occurs without an obvious structural lesion in the brain [3] and is characterized by rhythmic movement of anterior soft palate, attributable to contractions of the trigeminal nerve–innervated tensor veli palatini muscle, and not uncommonly auditory clicks². SPT is often associated with a brainstem or cerebellar lesion involving the dentato-

rubro-olivary pathway (Guillain-Mollaret triangle) [4]. In SPT, palatal movements result from activation of the levator veli palatini muscle.

GMT has three vertices: Red nucleus(RN) within the midbrain, inferior olivary nucleus (ION) in the medulla, and dentatae nucleus (DN) in the contralateral cerebellum. It has three interconnecting edges: descending "rubro-olivary fibers" along the central tegmental tractus from the RN to the ipsilateral ION, crossing "olivocerebellar fibers" between the ION and the contralateral cerebellar cortex via the inferior cerebellar peduncle, and "dentatorubral fibers" ascending from the DN to the contralateral RN via the contralateral superior cerebellar peduncle to the original RN to complete the DRO by decussating in the midbrain [5]. Any injury involving one of the vertices or edges of the triangle results in degeneration, which initially causes hypertrophy of the ION followed by its atrophy, called hypertrophic olivary degeneration, which typically presents with clinical symptoms of cerebellar dysfunction, dysmet-

ria, palatal tremor, or ataxia [3]. The cerebellum is predominantly excitatory, but the dentate nucleus within it has the primary function of inhibiting the inferior olivary nucleus via GABAergic projections. If the triangle is interrupted by pathology (vascular insult, demyelination or tumour), the inferior olivary nucleus is no longer inhibited and it hypertrophies [6]. As the inhibition is lost olivary nucleus rhythmically discharges causing palatal tremors.

A subgroup of the SPT form has a syndrome of progressive ataxia and palatal tremor (PAPT) [2]. PAPT may be divided into sporadic and familial forms. Sporadic PAPT is charecterised by cerebellar dysfunction, visual disturbances and palatal tremors at 2Hz. Patients typically have olivary hypertrophy and increases signal intensity on T2-weighted MRI [7]. Hypertrophic olivary degeneration [HOD] is a transsynaptic degeneration of the inferior olivary nucleus of the medulla because of a lesion within the boundary of the GM triangle [8,9]. For many sporadic PAPT cases, a neurodegenerative aetiology is postulated however, some patients with structural brain lesions or autoimmune diseases were reported to develop PAPT as well [10]. In sporadic PAPT, the most prominent feature is progressive cerebellar degeneration, presenting as a poorly understood neurodegenerative disorder with onset in mid to late adulthood [11]. Familial PAPT is more complex than sporadic PAPT and may result from various etiologies including Alexander's disease, polymerase gamma mutations, spinocerebellar ataxia type 20, and GM2 gangliosidosis [11]. Familial PAPT differs from sporadic PAPT in having marked atrophy of cervical cord and brainstem with corticospinal signs, although the hypertrophic olivary appearance on MRI may be absent.

In our case patient presented with progressive ataxia, palatal tremors and other cerebellar features that aligns with syndrome of progressive ataxia with palatal tremors. With some significant family history. Patient has no confounding history of trauma, stroke, surgery. Radiological findings revealed degenerative changes in brainstem with corticospinal tract degeneration with features suggestive of familial PAPT and also had cerebellar degenerative changes.

However considering features like spasticity in all limbs with exaggerated deep tendon reflexes suggestive of corticospinal tract involvement, and with some significant positive family history and inconclusive genetic testing were suggestive with diagnosis of familial progressive ataxia with palatal tremor (PAPT).

In our patient, after a few days of treatment frequency of palatal tremors decreased from 140 - 160 range to 90 to 110 range. However there is no improvement in ataxia. Patient is on regular follow up. There is no known effective treatment for the progressive ataxia, which is the most disabling symptoms of PAPT [2]. Further studies and trails are required to potentially provide more targeted therapies.

This case adds to the limited literature on familial PAPT, particularly in the context of differentiating familial and sporadic forms with inconclusive genetic results.

Conclusion

This case report highlights the importance of clinico-radiological correlation while differentiating familial and sporadic forms of PAPT. Knowledge of PAPT is very important in clinical practice in further evaluation of patients presenting with palatal tremors. It is also important to know how to differentiate sporadic PAPT from familial with clinical feature and MRI features even when genetic test is inconclusive.

Conflict of Interest

None.

Bibliography

- Bhattacharjee S. "Palatal Tremor Pathophysiology, Clinical Features, Investigations, Management and Future Challenges". Tremor and Other Hyperkinetic Movements (NY) 10 (2020): 40.
- 2. Samuel M., *et al.* "Progressive ataxia and palatal tremor (PAPT): clinical and MRI assessment with review of palatal tremors". *Brain* 127 (2004): 1252-1268.
- 3. Goyal M., *et al.* "Hypertrophic olivary degeneration: metaanalysis of the temporal evolution of MR findings". *AJNR American Journal of Neuroradiology* 21 (2000):1073-1077.

- Deuschl G., et al. "Symptomatic and essential palatal tremor:
 differences of palatal movements". Movement Disorder 9 (1994): 676-678.
- 5. Wein S., *et al.* "Hypertrophic olivary degeneration secondary to pontine haemorrhage". *Journal of Clinical Neuroscience* 22 (2015): 1213-1214.
- 6. Murdoch S., *et al.* "The Guillain–Mollaret triangle in action". *Practical Neurology* 16 (2016):243-246.
- 7. "Adult-onset Alexander disease with progressive ataxia and palatal tremor". *Movement Disorder* 23 (2024): 118-122.
- 8. Choh NA., *et al.* "Hypertrophic olivary degeneration. The forgotten triangle of Guillain and Mollaret". *Neurology India* 57 (2009): 507-509.
- 9. Konno T., et al. "Hypertrophic olivary degeneration: A clinico-radiologic study". Parkinsonism and Related Disorders 28 (2016): 36-40.
- 10. Silimon N., *et al.* "Four New Cases of Progressive Ataxia and Palatal Tremor (PAPT) and a Literature Review". *Clinical and Translational Neuroscience* 7.4 (2023): 32.
- 11. Marrakchi S., *et al.* "Progressive ataxia and palatal tremor (PAPT) with hypertrophic olivary degeneration (HOD): A case report". *Radiology Case Report* 19.6 (2024): 2264-2267.