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Abstract
A very rare neurological complication of SARS-CoV-2 infection includes transverse myelitis. I assume a post-infectious etiology 

in terms of secondary immunogenic overreaction. Iontophoresis is the process of the permeation of ionic (charged) drugs into the 
body under the influence of electrical current. Besides increasing therapeutic efficiency by, by passing first pass metabolism there 
are less risks of systemic absorption and undesirable side effects. The study was conducted in a SARS-CoV-2 patient with transverse 
myelitis, by transdermal application of dexamethasone sodium phosphate, cyclophosphamide and miconazole by iontophoresis at 
corresponding vertebral levels to look for the neurological outcome who had been unresponsive to intravenous methylprednisolone. 
With Dexamethasone sodium phosphate and cyclophosphamide iontophoresis there was modulation of the activity of posterior 
grey column, fasiculus gracilis and corticospinal tracts, and with miconazole iontophoresis I was able to ameliorate the dyesthesias, 
fasiculations and muscle atrophy probably due to neuromodulation at substantia gelatinosa and lamina IX and remyelination effect. 
There were no systemic or localized side effects and no adverse effects occurred during the treatment period.
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After the recognition of COVID-19 disease, caused by the SARS-
CoV-2, several reports refer to neurological symptoms in such pa-
tients [1,2], including Guillain-Barré Syndrome (GBS) [3-9]. A very 
rare neurological complication of SARS-CoV-2 infection includes 
transverse myelitis. Till date, a total of ten cases of transverse my-
elitis from acute SARS-CoV-2 infection have been reported (Sarma 

and Bilello, 2020; Zhao., et al. 2020; Chow., et al. 2020; Chakraborty., 
et al. 2020; Valiuddin., et al. 2020; AlKetbi., et al. 2020; Durrani., et 
al. 2020; Munz., et al. 2020; Zachariadis., et al. 2020; Abdelhady., et 
al. 2020) [53] In 30-60% of idiopathic TM cases, there is an ante-
cedent respiratory, gastrointestinal, or systemic illness [13]. I as-
sume a post-infectious etiology in terms of secondary immunogen-
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ic overreaction. The association between COVID-19 and GBS has 
recently been described both as parainfectious [3,7] and as post-
infective event [4,5,9], similar to other infections and coronavirus 
[11,12], suggesting a mechanism of molecular mimicry or part of 
systemic inflammatory cascade triggered by the virus.

Transverse myelitis has been attributed to infectious, parainfec-
tious, systemic autoimmune diseases, paraneoplastic, and ischemic 
diseases (Joshi., et al. 2020; Kincaid and Lipton, 2020; Lycklama., et 
al. 2020; Borchers and Gershwin, 2020).

The diagnosis of trans-verse myelitis involves characteristic 
clinical presentation of bilateral signs and symptoms with a clearly 
defined sensory level, in addition to evidence on neuroimaging, CSF 
and serologic studies (Proposed diag-nostic criteria and nosology 
of acute transverse myelitis, 2002). This case report points towards 
COVID-19 as a possible cause of acute transverse myelitis [53].

A person in his late 40s with no underlying commorbidity had 
presented with a sudden onset headache, bilateral lower limb 
weakness and urinary incontinence. On RT- PCR the patient had 
been covid positive. His IL) Interleukin 6 levels were (12 pg/mL, 
normal < 5·9), also associated with Covid-19 disease [10]. IL-6 is 
one of the primary cytokine involved in infection induced cytoki-
nine storm. Patient had been managed as a case of myelopathy with 
a spinal shock and had received IV Methylprednisolone for 3 days 
and then the patient was transitioned to oral prednisone 60 mg OD 
taper, for four months. His MRI dorsal spine showed diffused intra-
medullary/ edema involving the conus and mid lower dorsal cord. 
His CSF analysis showed moderate CSF pleocytosis with neutro-
philic predominance. CSF protein content was mildly raised, with 
normal sugar levels. LDH levels in the CSF were markedly raised. 
CBC was within normal limits. Anti NMO antibodies and oligoclo-
nal bands were negative in both CSF and serum. Anticardiolipin 
and phospholipid antibodies were negative too. Vasculitic profile 
including ANA, ANCA, ACE levels were within normal limits. VDRL 
and viral markers were non reactive. His DSA and spinal angiogram 
was normal. Microbiologic testing on CSF and serum was negative 
(HSV1-2, EBV, VZV, CMV, HIV, Mycoplasma Pneumoniae, Borrelia). 

Before starting with transdermal dorsal vertebral iontophore-
sis, 5 months after the sequale the patients neurological examina-
tion revealed diminished sensation, in the dermatome T8- T12, 
with the loss of all superficial, deep and combined cortical sensa-
tions except deep touch sensation till T12 dermatome, with a Medi-

cal Research Council (MRC) scale grading of muscle power as 3/5 
in the abdominal muscles, 2/5 in the quadrates lamborum and 0/5 
in the lower limbs. The patient had a flaccidity in his lower limbs. 
The patient was complaining of dysthesias and persistent fasicula-
tions in his lower limbs. There was no bladder or bowel control. 
The abdominal reflex was present, B/l knee reflexes were absent 
and ankle reflex was present. The plantars were extensors in na-
ture. 

Dexamethasone sodium phosphate (4mg) and cyclophospha-
mide (250mg) transdermal iontophoresis on corresponding verte-
bral segments (T9-T12) and T12-L2 was initially initiated for first 
three weeks followed by iontophoresis by miconazole nitrate gel 
2% and polyethylene glycol for next three weeks to look for the 
outcome. On day 3 of the iontophoresis the plantars were down 
going, On day 4 pelvic control started developing. On Day 5 knee 
extensors and ankle dorsiflexors were grade 1, On day 10 the pa-
tient gained Knee and ankle joint proprioception and the patient 
responded to deep pressure sense at L5-S1, S1-S2, S3- S4 derma-
tome. On Day 15 pelvic control of Grade 3 was achieved. On Day 
22 we started with the transdermal iontophoresis of Micanazole 
nitrate gel 2% to look for the outcome. On day 28th Pelvic Control 
of Grade 4 was achieved and by day 35th, the patient had a full relief 
from dyesthesias and fibrillations. His long toe flexors and dorsi-
flexors, knee extensors, hip extensors were grade 1 and there was 
a slight increase in muscle tone. 

Discussion
Dexamethasone helps to reduce inflammation and calms down 

an overactive immune system. The exact mechanism of action is 
not clear but some of the possible mechanisms include antiedema 
effect, stabilization of blood brain barrier, reduction of proinflam-
motory cytokines and apoptosis of T cells [54]. Dexamethasone 
sodium phosphate (Dex-P) delivered via iontophoresis is com-
monly used in physiotherapy to treat tendinopathies; bursitis, shin 
splints, rheumatoid arthritis and delayed muscle soreness [14-
36]. Dexamethasone acts as a stimulator of glucocorticoid recep-
tors signaling pathway, which reduces the production of cytokines 
and decreases neutrophil tissue invasion and damage. In addition, 
dexamethasone inhibits the phospholipase A2 enzyme that plays 
a role in the biosynthesis of leukotrienes, prostaglandins, throm-
boxane A2, and prostacyclin [37]. It has been found that abnormal 
neuroinflammation ignited by overproduction of chemokines and 
cytokines via microglial cells can induce the occurrence and de-
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velopment of neurodegenerative disorders. It has been found that 
dexamethasone sodium phosphate inhibited the neuroinflamma-
tory response and migration in LPS Lipopolysaccharide-activated 
BV-2 microglia by inhibiting the secretion of RANTES, as regulated 
on activation, normal T cell expressed and secreted transforming 
growth factor beta-β1 TGF-β1, and NO nitric oxide and increasing 
the production of MIP-1α macrophage inflammatory protein-1α 
and interleukin 10 IL-10, besides inhibition of TRAF6/TAK-1/JNK 
tumor necrosis factor receptor-associated factor 6/ Transforming 
growth factor B- activated kinase 1/ Jun N- terminal protein Kinase 
signaling pathways mediated by IRAK-1 and IRAK-4 (InterLeukin 
Associated Kinase 1 and 4) [38].

In patients with severe acute immune-mediated longitudinally 
extensive transverse myelitis who fail to respond to corticosteroids 
and plasma exchange, cyclophosphamide induction should be con-
sidered [39]. This agent and regimen provides a robust immunosup-
pressive response and can be induced rapidly. Cyclophosphamide 
has been shown to decrease the secretion of the pro-inflammatory 
T helper (Th) 1 cytokine interferon-γ (IFNγ) and interleukin (IL)-
12 and to increase the secretion of the anti-inflammatory Th2 cy-
tokines IL-4 and IL-10 in cerebrospinal fluid (CSF) and peripheral 
blood. Methotrexate which is also a immunosuppressant and che-
motherapy agent has been administered through iontophoresis by 
using hydrogel patches [40]. It was found that the transport was 
influenced by physicochemical properties of the system (cross-
linking density of the hydrogel and copolymerisation), duration of 
electrical currents and the condition of the skin. Besides this the 
iontophoretic application of cyclophosphamide has been used to 
treat breast cancer and mastitis [41]. Further in a study Cyclophos-
phamide administration in association with osmotic blood-brain 
barrier opening did not cause significant neural toxicity [42].

Based on the defined role of dexamethasone and cyclophospha-
mide as chemical neuromodulators, neuromodulation by way of 
iontophoresis in asymptomatic SARS-COV 2 with extensive myeli-
tis was considered to look for outcome. The other considerations 
which were kept in view were rate of iontophoretic delivery and 
the chemical property of Cyclophosphamide as it is inert until acti-
vated by enzymes in the liver. Cyclophosphamide is biotransformed 
principally in the liver to active alkylating metabolites by a mixed 
function microsomal oxidase system. In the present study, the lev-
els of the plasma concentration of the drug reached, which might 
have passed into systemic circulation through dermal capillary 
network to liver to undergo activation remains unclear. Complete 

blood count including Liver Function, Kidney Function Tests were 
carried out on weekly basis to rule out any toxicity due to cyclo-
phosphamide iontophoresis, and the parameters were normal.

Studies designed to evaluate the depth of penetration of the 
drugs (DEX, prednisolone, salicylate, and lidocaine) into local tis-
sue following iontophoresis have demonstrated that a depot is 
formed in the area of the epidermis [43-46]. Deeper penetration 
of the drug apparently occurs not from iontophoretic current, but 
from passive diffusion. Passive diffusion is a slower, mass transfer 
process compared with iontophoresis. Thus, for equivalent ionto-
phoretic dosages, it is time, not current magnitude, that dictates 
the ultimate local depth of penetration. In living tissue, however, 
other factors such as local blood flow will determine the ultimate 
depth of local penetration. A study conducted [47] to determine 
the time course of dexamethasone sodium phosphate (Dex-P) dur-
ing iontophoresis to underlying tissues using microdialysis there 
was no difference in Dex-total between current intensities (P = 
.99), but a greater amount of Dex-total was recovered superficial-
ly at 1 mm compared to the 4-mm depth (P<.0001). 17 I In our 
study we used 40mA plain faradic current delivered for 10 min-
utes to reach a therapeutic effect. The dexamethasone was deliv-
ered through cathode and cyclophosphamide through anode. Me-
tallic electrodes secured with lint pads which were instilled with 
drugs were used for iontophoresis. Cyclophosphamide 250 mg 
was diluted with 20 ml saline. Through our study we were able to 
modulate the activity of posterior grey column, fasciculus gracilis 
and corticospinal tracts which was apparent as the patient gained 
joint proprioception of the knee and ankle and responded to the 
deep pressure sense at L5-S1, S1-S2,S3-S4 dermatome, down go-
ing plantars and attaining a pelvic control of Grade 3 in quadrapod 
position. It has been found that the antifungal miconazole and the 
steroid clobetasol stimulates mouse and human oligodendrocyte 
progenitor cells (OPCs) into generating myelin-producing cells in 
culture. [48,49]. They found that miconazole and eight other re-
lated drugs all blocked an enzyme called CYP51. Blocking CYP51 
encouraged stem cells to form new oligodendrocytes. These are the 
cells that create the myelin coatings around nerve cells. 

CYP51 is part of the molecular pathway that produces choles-
terol. The researchers discovered that blocking two other enzymes 
in that pathway also promoted oligodendrocyte production. The 
utilization of chemical penetration enhancers in conjunction with 
iontophoresis is regarded as the most effective method to enhance 
the passage of molecules across the skin barrier 50. In our study 
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we used polyvinyl alcohol [51,52] to enhance the permeability of 
Miconazole. Transdermal iontophoretic application of miconazole 
nitrate for three weeks was able to ameliorate dyesthesias, fasicu-
lations and muscle atrophy probably due to neuromodulation at 
substantia gelatinosa and lamina IX and remyelination effect.

Conclusion
Dexamethasone Sodium Phosphate, Cyclophosphamide and Mi-

conazole Iontophoresis on subsequent transdermal spinal levels 
can be considered in patients with myelitis, for modulation, during 
acute stages.
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