

# ACTA SCIENTIFIC MEDICAL SCIENCES (ISSN: 2582-0931)

Volume 9 Issue 6 June 2025

Research Article

# Effectiveness of Educational Interventions Integration with Health Services in Improving Oral Health Behaviors and Preventing Oral Diseases; Systematic Review

# Noof Khaled A Alsahiem<sup>1\*</sup>, Khlood Mohammad Alasiri<sup>2</sup>, Nourah Falah Al-Mutairi<sup>2</sup>, Aljawharah Suliman Alomair<sup>3</sup> and Nourah Nasserallah Alomran<sup>4</sup>

<sup>1</sup>Dental Department, Senior Specialist Public Health, Armed Forces Hospital, Dhahran, Saudi Arabia

<sup>2</sup>Dental and Oral Health Specialists, Dental Department, King Fahad Military Medical Complex – Dhahran, Saudi Arabia

<sup>3</sup>Dental Hygienist, Dental Department, Armed Forces Hospital, Dhahran, Saudi Arabia

<sup>4</sup>Dental and Oral Health Specialist, Dental Department, Armed Forces Hospital, Dhahran, Saudi Arabia

\*Corresponding Author: Noof Khaled A Alsahiem, Dental Department, Senior Specialist Public Health, Armed Forces Hospital, Dhahran, Saudi Arabia.

Received: May 05, 2025
Published: May 19, 2025

© All rights are reserved by Noof Khaled A

Alsahiem., et al.

#### **Abstract**

**Background:** Oral diseases is a major global health concern, mainly in children and adolescents. Integrating educational interventions within health services can improve oral health behaviors and clinical outcomes. In this systematic review we aimed to evaluate the effectiveness of educational interventions integrated with health services to improve oral health behaviors and prevent oral diseases.

Methods: A literature search was conducted in PubMed, Scopus, Web of Science, and Google Scholar. We include studies with individual's ≤19 years, include educational strategies linked to health systems, and report clinical oral health outcomes. Thirteen studies were included following PRISMA guidelines. Data were synthesized qualitatively. Methodological quality was assessed using the Joanna Briggs Institute (JBI) appraisal tools.

**Results:** Included interventions differ in type (digital tools, school-based sessions, visual aids) and delivery settings (schools, primary care, community clinics). Most interventions show improvements in knowledge, brushing behavior, plaque index, gingival health, or ECC reduction. Integration within health services and reinforcement by health professionals or teachers improve effectiveness.

**Conclusion:** Educational interventions integrated into health systems promot oral health behaviors and prevent disease. Implementation in school and primary care is recommended for long-term public health improvement.

Keywords: Oral Health Education; Health Services Integration; Preventive Dentistry; Behavioral Intervention

#### **Abbreviations**

OH: Oral Health; ECC: Early Childhood Caries; PI: Plaque Index; GI: Gingival Index; PHC: Primary Health Care; RCT: Randomized Controlled Trial; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; JBI: Joanna Briggs Institute; mHealth: Mobile Health

#### Introduction

Oral diseases is a widespread global problem, contributing to pain, discomfort, and affect quality of life for millions of individuals [1]. Conventional oral health education show benefits, and integrating educational interventions within health service systems also show greater potential in to promote oral hygiene practices and prevent oral conditions [2]. This integration provide a systematic, accessible, and contextually relevant approach to oral health promotion, mainly in vulnerable populations [3].

Combination of oral health education with primary care centers, community clinics, and school health services, facilitates routine exposure to prevent messages and reinforces behavior through interaction with healthcare professionals [2]. This aligns with the strategy of addressing common risk factors for chronic diseases, creating synergy between oral and general health initiatives [4]. The agreement between oral health promotion and general health services fosters a more holistic and cost-effective model of care, mainly in settings where dental services alone are not available [4].

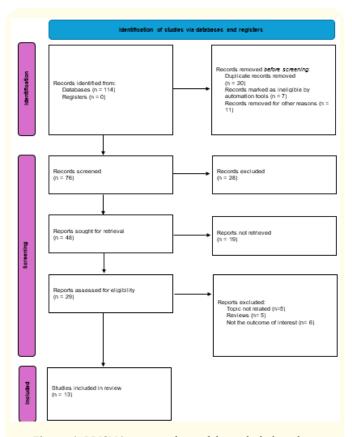
School-based interventions, mainly offer opportunities to educate children in their formative years while involving teachers and parents [5]. These programs shape lifelong habits that prevent dental caries and periodontal conditions [5]. Community-based programs embedded in health service contexts enhance oral health literacy and empower individuals to take control of their preventive care practices [3].

Strategic scaling of integrated educational interventions is important to address equity gaps and oral health outcomes on a broader scale [2]. This review aims to evaluate the effectiveness of educational interventions integrated with health services to improve oral health behaviors and prevent oral diseases.

#### Method

# Search strategy

A systematic literature search was conducted to identify interventional studies which evaluate educational strategies and aimed to improve oral health in children and adolescents. Databases searched include PubMed, Scopus, Web of Science, and


Google Scholar. Keywords include, oral health education, school-based intervention, children, adolescents, plaque index, and preventive dentistry. We also do manual searches of references in relevant articles to identify additional eligible studies. Only full-text, peer-reviewed articles published in English were considered.

#### **Inclusion criteria**

We include studies when, the intervention involved an educational strategy targeting oral health behavior or awareness, participants were children or adolescents aged ≤19 years, measured oral health-related outcomes, design was experimental or quasi-experimental, full-text was accessible. We exclude reviews, opinion pieces, or editorials, studies included adult participants exclusively, and studies did not assess behavioral or clinical oral health outcomes.

# **Study selection**

Two independent reviewers screened titles and abstracts, followed by full-text assessments to assess eligibility. Disagreements were resolved through discussion with a third reviewer. Thirteen studies were selected for final analysis (Figure 1).



**Figure 1:** PRISMA consort chart of the included studies.

#### **Data extraction**

A standardized data extraction form was used to collect (citation, country, study design, sample size, participant demographics, type and duration of the intervention, outcome measures, and main findings). Extracted data were categorized into comparative tables for synthesis.

# **Quality assessment**

We used the Joanna Briggs Institute (JBI) Critical Appraisal Tools to assess the methodological quality of included studies. Each study was appraised using the checklist appropriate to its design. We evaluate clarity of cause-effect relationship, group similarity, presence of control group, equal treatment across groups, reliable outcome measurement, follow-up completeness, and appropriate statistical analysis (Table 1).

| Citation                                       | Clear<br>cause-<br>effect<br>aim? | Participants<br>similar? | Control<br>group<br>present? | Groups<br>treated<br>equally? | Reliable<br>outcome<br>measures? | Follow-up<br>complete? | Appropriate statistics? | Quality Rat-<br>ing |
|------------------------------------------------|-----------------------------------|--------------------------|------------------------------|-------------------------------|----------------------------------|------------------------|-------------------------|---------------------|
| Khurana., <i>et al</i> .<br>2019               | Yes                               | Yes                      | No                           | Yes                           | Yes                              | Yes                    | Yes                     | Moderate            |
| Khudanov., et al.<br>2018                      | Yes                               | Yes                      | Yes                          | Yes                           | Yes                              | Yes                    | Yes                     | Strong              |
| Lotto., et al. 2020                            | Yes                               | Yes                      | Yes                          | Yes                           | Yes                              | Yes                    | Yes                     | Strong              |
| Mohebbi., et al.<br>2009                       | Yes                               | Yes                      | Yes                          | Yes                           | Yes                              | Yes                    | Yes                     | Strong              |
| Movaseghi<br>Ardekani., <i>et al</i> .<br>2022 | Yes                               | Yes                      | No                           | Yes                           | Yes                              | Yes                    | Yes                     | Moderate            |
| Mohamadkhah.,<br>et al. 2013                   | Yes                               | Yes                      | Yes                          | Yes                           | Yes                              | Yes                    | Yes                     | Strong              |
| Shirahmadi., <i>et al</i> . 2024               | Yes                               | Yes                      | Yes                          | Yes                           | Yes                              | Yes                    | Yes                     | Strong              |
| Blake., <i>et al</i> . 2015                    | Yes                               | Yes                      | No                           | Yes                           | Yes                              | Partial                | Yes                     | Moderate            |
| Frohlich., et al.<br>2022                      | Yes                               | Yes                      | Yes                          | Yes                           | Yes                              | Yes                    | Yes                     | Strong              |
| Moosavi., et al.<br>2021                       | Yes                               | Yes                      | No                           | Yes                           | Yes                              | Yes                    | Yes                     | Moderate            |
| Edvardsson., et al. 2022                       | Yes                               | Yes                      | No                           | Yes                           | Yes                              | Partial                | Yes                     | Moderate            |
| Jafari., <i>et al</i> . 2020                   | Yes                               | Yes                      | Yes                          | Yes                           | Yes                              | Yes                    | Yes                     | Strong              |
| Gholami., et al.<br>2017                       | Yes                               | Yes                      | No                           | Yes                           | Yes                              | Partial                | Yes                     | Moderate            |

Table 1: JBI Quality Appraisal Summary of included studies.

#### **Data analysis**

We performed qualitative synthesis and findings were grouped based on intervention methods and their effectiveness to improve knowledge, behavior, and clinical oral health indices.

#### **Results**

Thirteen studies were included in this systematic review, with a range of interventions aimed at promoting oral health in children and adolescents. These interventions varied in content,

delivery methods, and participant demographics but all aimed to enhance oral hygiene knowledge, attitudes, and practices through structured educational programs (Table 2).

Interventions based on visual or digital media were effective in multiple settings. One study show that an educational film improved students' knowledge and attitudes in brushing and flossing, with maintained effects at three months follow-up [6]. Another trial used comic-based materials and found significant gains in both oral health knowledge and self-reported practices in schoolchildren [7]. A quasi-experimental study of children with intellectual disabilities showed improvement in both plaque index and oral hygiene behavior scores after exposure to tailored educational materials [8] (Table 3).

Digital platforms were a successful tools. An intervention using WhatsApp messages target parents resulted in reductions in visible plaque and improved parental engagement in oral health practices for their children [9]. Gamification strategies in Telegram groups, posters, and animations led to increases in tooth brushing and flossing frequency, with improved plaque and hygiene indices [10].

School-based and professional-led approaches show a good benefits. A single classroom session conducted by dental professionals enhance oral hygiene knowledge and behavioral intention at six-week follow-up [11]. Teacher-led programs in rural areas also boosted brushing frequency and student knowledge [12]. Peer-led and culturally adapted programs were effective to improve attitudes and self-efficacy, mainly in students from marginalized or migrant backgrounds [13,14].

Technological enhancements, QLF-based visualization devices, increased adolescents' awareness of plaque and enhanced commitment to oral hygiene behaviors [15]. In children with hearing impairments, visually supported sessions were successful to reduce plaque and gingival index scores [16].

Braille-based oral health education was effective in visually impaired children, with repeated exposure over five months and produce a decrease in plaque and gingival inflammation [17]. Interventions delivered by vaccination staff, were effective to lower early childhood caries rates and improve overall dental health [18].

| Citation               | Study Design                        | Intervention<br>Type and<br>Duration                            | Study Aim                                                                      | Population<br>Characteristics                                                | Study<br>Duration | Methodology                                                                                          |
|------------------------|-------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------|
| Khurana., et al. 2019  | Before-after<br>comparison<br>trial | Braille-based<br>oral health<br>education                       | To assess impact of Braille text on oral hygiene in visually impaired children | 165 children<br>(7–19 years),<br>blind school in<br>Delhi                    | 5 months          | Questionnaire + PI and<br>GI indices at 1, 3, and<br>5 months; repeated in-<br>structions in Braille |
| Khudanov., et al. 2018 | Randomized<br>controlled trial      | QLF technol-<br>ogy-based<br>education<br>using Qscan<br>device | To assess impact on oral hygiene and literacy using QLF tech                   | 100 adolescents<br>aged 14–16<br>in Tashkent,<br>Uzbekistan                  | 8 weeks           | Control vs QLF tech;<br>plaque index, knowledge,<br>attitude, behavior as-<br>sessed pre/post        |
| Lotto., et al. 2020    | Randomized<br>controlled trial      | Educational<br>WhatsApp<br>messages for<br>parents              | To evaluate mHealth intervention on ECC in low-income children                 | 104 parent-child<br>pairs (36–60<br>months), Bauru,<br>Brazil                | 6 months          | WhatsApp messages<br>biweekly; VPI and ICDAS<br>measured at baseline, 3,<br>and 6 months             |
| Mohebbi., et al. 2009  | Cluster random-<br>ized trial       | Oral health<br>education via<br>vaccination<br>staff            | To assess<br>ECC preven-<br>tion in 12–15<br>month-olds<br>via PHC staff       | 242 children<br>in Tehran, Iran,<br>attending 18<br>public health<br>centers | 6 months          | Three arms: Control, Education, Education+Reminders; dt/de indices tracked over 6 months             |

|                                  | 1                                    |                                                                                 |                                                                                 | T                                                                | ľ        | 61                                                                                                 |
|----------------------------------|--------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------|
| Movaseghi Ardekani., et al. 2022 | Quasi-experi-<br>mental              | Educational<br>intervention<br>in students<br>with intellec-<br>tual disability | To assess the impact of oral health education in special needs children         | 60 students with intellec- tual disability (10–16 years), Tehran | 3 months | Pre/post questionnaires;<br>plaque index and health<br>behavior scores com-<br>pared               |
| Mohamadkhah., et al.<br>2013     | Quasi-experi-<br>mental              | Educational<br>film for oral<br>health pro-<br>motion                           | To examine<br>the effect<br>of film on<br>self-care<br>behaviors in<br>students | 300 girls aged<br>10–12 in Chaba-<br>har, Iran                   | 3 months | Pre/post testing of<br>knowledge, attitude,<br>practice; film group vs<br>control vs lecture group |
| Shirahmadi., et al.<br>2024      | Randomized<br>controlled trial       | Multi-method<br>SCT-based<br>oral health<br>education<br>program                | To evaluate gamified SCT-based education for oral health behavior               | 190 girls (11–12<br>years), fifth-<br>grade, Hama-<br>dan, Iran  | 3 months | 10 sessions + Telegram<br>group + family engage-<br>ment; Plaque Index, OHI-<br>S, and CPI used    |
| Blake., <i>et al</i> . 2015      | Cohort study<br>(pre/post<br>design) | Single class-<br>room oral<br>health educa-<br>tion session                     | To evaluate school-based education by dental professionals on child oral health | 150 children<br>(9–12 years),<br>3 UK primary<br>schools         | 6 weeks  | One 60-min session;<br>questionnaires at base-<br>line, post, and 6-week<br>follow-up              |
| Frohlich., et al. 2022           | Cluster random-<br>ized trial        | Comic-based<br>oral health<br>education                                         | To assess the effectiveness of comics to improve dental health knowledge        | 361 students<br>aged 9–12, Ber-<br>lin schools                   | 4 weeks  | Pre/post questionnaires<br>+ interviews assessing<br>knowledge, attitude,<br>practices             |
| Moosavi., et al. 2021            | Experimental<br>study                | Education on<br>oral hygiene<br>for hearing-<br>impaired<br>students            | To improve oral health behavior among hearing-impaired children                 | 60 children<br>(9–14 years),<br>special schools<br>in Tehran     | 2 months | PI and GI measured pre/<br>post; verbal + visual aids<br>used for instruction                      |
| Mohamadkhah., et al.<br>2013     | Quasi-experi-<br>mental              | Educational<br>film on oral<br>health                                           | To examine<br>the effect<br>of film on<br>self-care<br>behaviors in<br>students | 300 girls aged<br>10–12 in Chaba-<br>har, Iran                   | 3 months | Pre/post testing of<br>knowledge, attitude,<br>practice; film group vs<br>control vs lecture group |

| Shirahmadi., et al. | Randomized       | Gamified    | To evaluate   | 190 girls (11-12 | 3 months | 10 sessions + Telegram    |
|---------------------|------------------|-------------|---------------|------------------|----------|---------------------------|
| 2024                | controlled trial | SCT-based   | gamified      | years), fifth-   |          | group + family engage-    |
|                     |                  | education   | SCT-based     | grade, Hama-     |          | ment; PI, OHI-S, CPI used |
|                     |                  | (videos,    | education for | dan, Iran        |          | pre/post                  |
|                     |                  | booklets,   | oral health   |                  |          |                           |
|                     |                  | Telegram    | behavior      |                  |          |                           |
|                     |                  | group, cer- |               |                  |          |                           |
|                     |                  | emonies)    |               |                  |          |                           |
| Blake., et al. 2015 | Cohort study     | Classroom   | To evaluate   | 150 children     | 6 weeks  | One 60-min session;       |
|                     | (pre/post        | session by  | school-based  | (9-12 years),    |          | questionnaires at base-   |
|                     | design)          | dental pro- | education     | 3 UK primary     |          | line, post, and 6-week    |
|                     |                  | fessionals  | by dental     | schools          |          | follow-up                 |
|                     |                  |             | professionals |                  |          |                           |
|                     |                  |             | on child oral |                  |          |                           |
|                     |                  |             | health        |                  |          |                           |

 Table 2: Educational Intervention Studies in Oral Health.

| Citation                         | Demographic Characteristics                                    | Main Findings                                                       | Outcomes                                                                   |
|----------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|
| Khurana., et al. 2019            | 165 children (7–19 years),<br>blind school in Delhi            | Braille-based education<br>improved oral hygiene<br>scores          | Significant improvement in PI and GI over 5 months                         |
| Khudanov., et al. 2018           | 100 adolescents aged 14–16 in<br>Tashkent, Uzbekistan          | QLF-based tech increased<br>awareness and improved<br>plaque scores | Improved oral hygiene and knowledge scores post-intervention               |
| Lotto., et al. 2020              | 104 parent-child pairs (36–60 months), Brazil                  | WhatsApp education reduced visible plaque and caries incidence      | Lower VPI and better parental knowledge at follow-up                       |
| Mohebbi., et al. 2009            | 242 children, 12–15 months,<br>Tehran, Iran                    | PHC-based education reduced ECC rates                               | Education and reminders group showed lowest dt/de scores                   |
| Movaseghi Ardekani., et al. 2022 | 60 students with intellectual disability (10–16 years), Tehran | Oral health education im-<br>proved plaque index and<br>behavior    | Significant gain in health behavior scores post-training                   |
| Mohamadkhah., et al.<br>2013     | 300 girls aged 10–12 in Chabahar, Iran                         | Film-based education<br>increased knowledge and<br>attitude         | Knowledge, attitude, and some behaviors improved at 3 months               |
| Shirahmadi., et al. 2024         | 190 girls (11–12 years), Hamadan, Iran                         | Gamified SCT-based intervention improved brushing, flossing         | Higher frequency of brushing/<br>flossing, lower plaque, improved<br>OHI-S |
| Blake., et al. 2015              | 150 children (9–12 years), UK                                  | Single session increased<br>knowledge and behavior<br>intent        | Sustained improvement in self-<br>reported hygiene after 6 weeks           |
| Frohlich., et al. 2022           | 361 students aged 9–12, Berlin                                 | Comic-based education increased engagement and knowledge            | Statistically significant increase in knowledge and practices              |
| Moosavi., et al. 2021            | 60 hearing-impaired children<br>(9–14 years), Tehran           | Tailored education im-<br>proved hygiene scores                     | Reduced PI and GI scores post intervention                                 |

| Edvardsson., et al. 2022 | 84 children with migration background, Sweden   | Cultural adaptation of content improved retention    | Greater oral health awareness and hygiene practice improvement     |
|--------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|
| Jafari., et al. 2020     | 200 schoolchildren (10–11<br>years), rural Iran | Teacher-led intervention increased daily brushing    | Statistically significant rise in brushing frequency and knowledge |
| Gholami., et al. 2017    | 93 adolescents (12–14), Isfa-<br>han, Iran      | Peer-led education effec-<br>tive in attitude change | Improved self-efficacy and reduction in harmful oral habits        |

**Table 3:** Main findings of the included studies.

# Discussion

The findings of this systematic review show that educational interventions integrated with health services improve oral health behaviors and prevent oral diseases in children and adolescents. Across the 13 included studies, interventions differ in format and delivery but showed positive impacts on knowledge acquisition, behavior change, and clinical outcomes, plaque reduction, gingival health, and caries prevention.

These findings closely related to those of Menegaz., et al. (2018), who reported that educational interventions delivered by healthcare professionals in health service settings result in positive behavioral changes and improvements in oral health outcomes. Their review show the contextual strength of education within existing healthcare structures, mainly in underserved populations. Our included studies confirmed that interventions delivered through schools, primary care, or family-centered approaches were more effective when combined with regular health service contact and reinforcement [19].

Akera., et al. (2022) conducted a systematic review and metaanalysis focused on school-based oral health programs in lowand middle-income countries. They reported improvements in DMFT scores, plaque reduction, and behavioral indicators, mainly when interventions included skills training, access to care, and family engagement, these support our results, which show that multifaceted school-based programs involving gamification and community participation, had strong behavioral outcomes and measurable clinical benefits [20].

Our review included studies that used WhatsApp and Telegram for parent-targeted interventions, which showed high engagement and behavioral change. Chau., *et al.* (2023) found that mHealth interventions in older adults result in improvements of oral hygiene

behaviors and knowledge. Though their population differs, the parallel in using mobile platforms to deliver accessible educational content strengthens the case for digital interventions in age groups and settings [21].

Nakre and Harikiran (2013) found that oral health education programs are effective when they are labor-intensive, involve teachers or caregivers, and supported by resources. This is in line with our findings, where studies that involved trained teachers, peer leaders, or health professionals with structured curricula show higher impact on knowledge retention and long-term behavioral change [22]. The variation in quality and long-term follow-up in reviewed studies, as shown by Menegaz., *et al.* (2018), is a concern in this field. Interventions that were grounded in behavioral theory, offered multiple exposures, and integrated family components show the highest success, which support previous findings [20,22].

# Conclusion

Integrating educational interventions into health service systems and leveraging school infrastructure enhance their reach and sustainability. Continued investment in structured, theorybased, and context-sensitive programs is essential to achieve oral health improvement in diverse populations.

#### **Conflict of Interest**

None.

# **Ethical Approval**

Not applicable.

# **Funding**

None.

# **Bibliography**

- 1. Kay EJ and Locker D. "Effectiveness of oral health promotion: a review". *British Dental Journal* 183.5 (1997): 187-192.
- 2. Grover S and Luthra R. "Integration of oral health into primary health care: A systematic review". *Journal of Family Medicine and Primary Care* 8.6 (2019): 1838-1845.
- Taiwo JO., et al. "The effectiveness of oral health education in improving oral hygiene knowledge and practices among market women in Nigeria". Nigerian Medical Journal 56.2 (2015): 118-123.
- 4. Suresh KS., et al. "Integration of oral health care within the healthcare system: An editorial". *International Society of Preventive and Community Dentistry* 3.1 (2023): 1-3.
- Shrestha A., et al. "Effectiveness of oral health education intervention among 12-15-year-old school children in Nepal".
   *Journal of Nepal Medical Association (JNMA)* 59.236 (2021): 1002-1007.
- Mohamadkhah F., et al. "The effect of digital media programs on the oral health promotion in the health office: a quasi-experimental study". Shiraz E-Medical Journal 14.1 (2013): 1-11.
- 7. Frohlich L., *et al.* "Comic-based oral health education for children: a randomized controlled trial". *International Journal of Paediatric Dentistry* 32.1 (2022): 45-52.
- Movaseghi Ardekani F., et al. "The Effect of an Educational Intervention on Oral Health Literacy, Knowledge, and Behavior in Iranian Adolescents: A Theory-Based Randomized Controlled Trial". Biomed Research International 1 (2022).
- Lotto M., et al. "Parental-oriented educational mobile messages to aid in the control of early childhood caries in low socioeconomic children: A randomized controlled trial". Journal of Dentistry 101 (2020): 103456.
- 10. Shirahmadi S., *et al.* "Effectiveness of theory-based educational interventions of promoting oral health among elementary school students". *BMC Public Health* 24.1 (2024): 130.
- 11. Blake H., *et al.* "School-Based Educational Intervention to Improve Children's Oral Health-Related Knowledge". *Health Promotion Practice* 16.4 (2015): 571-582.
- 12. Jafari A., *et al.* "Teacher-led toothbrushing program in rural Iranian schools: a community-based intervention". *Journal of Education and Health Promotion* 9 (2020): 112.

- 13. Edvardsson V., *et al.* "Culturally adapted oral health education for immigrant children in Sweden: a pilot study". *European Archives of Paediatric Dentistry* 23.4 (2022): 789-796.
- 14. Gholami M., *et al.* "Impact of peer-led oral health education on Iranian adolescents: a cluster randomized trial". *BMC Oral Health* 17 (2017): 51.
- 15. Khudanov B., *et al.* "Effect of an oral health education program based on the use of quantitative light-induced fluorescence technology in Uzbekistan adolescents". *Photodiagnosis and Photodynamic Therapy* 21 (2018): 379-384.
- Moosavi H., et al. "Effectiveness of oral health education for hearing-impaired children: a randomized controlled trial". Spec Care Dentist 41.2 (2021): 123-129.
- 17. Khurana C., *et al.* "Effectiveness of oral health education program using braille text in a group of visually impaired children-before and after comparison trial". *Journal of Education and Health Promotion* 8.1 (2019): 50.
- 18. Mohebbi SZ., et al. "A Cluster Randomised Trial of Effectiveness of Educational Intervention in Primary Health Care on Early Childhood Caries". Caries Research 43.2 (2009): 110-118.
- Menegaz AM., et al. "Intervenções educativas em serviços de saúde e saúde bucal: revisão sistemática". Rev Saude Publica 52 (2018): 52.
- Akera P., et al. "Effectiveness of primary school-based interventions in improving oral health of children in low- and mid-dle-income countries: a systematic review and meta-analysis".
   BMC Oral Health 22.1 (2022): 264.
- 21. Chau RCW., et al. "A Systematic Review of the Use of mHealth in Oral Health Education among Older Adults". *Dental Journal* 11.8 (2023): 189.
- 22. Nakre P and Harikiran A. "Effectiveness of oral health education programs: A systematic review". *International Society of Preventive and Community Dentistry* 3.2 (2013): 103.