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Abstract

There is a famous saying which goes as ‘nothing is permanent except change’. We are all aware that the way our genes are ex-
pressed remains unchanged for a lifetime. Now, then why do we talk about change in genes, isn’t it strange? Yes! Let’s read more 
about this interesting topic, ‘EPIGENETICS’. Changes in genetic sequence or in other words, genetic variations resulting in inter-indi-
vidual differences in a particular trait is something we all know about. Unlike this, epigenetic changes refer to addition of chemical 
compounds to single genes which can potentially regulate their activity. Identified triggers of epigenetic changes are tobacco smoke, 
pesticides, diesel exhaust, heavy metals, polycyclic aromatic hydrocarbons, radioactivity, hormone therapy and exposure to certain 
bacteria or virus. Nutrients have a potential role in modifying epigenetic mechanisms [1,2].
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Types of epigenetic processes

Deoxyribonucleic Acid (DNA) modifications can affect gene 
activity without altering the DNA sequence. Epigenetic changes in 
a gene are modifications that affect its activity through addition 
of chemical compounds. Epigenetic changes transform a genome 
into an epigenome as adjuncts (chemical compounds) are on or 
attached to a gene within a genome. These chemical compounds of 
the epigenome are not part of the DNA sequence. Diet and exposure 
to pollutants are environmental influencers of an epigenome [3].

Epigenetic processes which alter gene activity without changes 
in DNA sequence, are capable of transmission to daughter cells 
(eventhough some epigenetic changes can be reversed). Epigenetic 
processes are natural and essential to a number of cellular 
functions, but if they occur improperly, there can be major adverse 
health and behavioural effects [1].
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The most significant epigenetic mechanisms include DNA 
methylation, histone modifications, and the non-coding RNAs 
[4-6]. Epigenetic processes mainly DNA methylation and histone 
modifications lead to persistent effects on the availability of DNA 
for transcription [7].

Figure 2

DNA methylation is the epigenetic process of converting a 
cytosine (within a CpG dinucleotide) into ‘5-methylcytosine’ 
through the addition of a methyl group. DNA methylation is generally 
associated with gene silencing, and DNA demethylation is usually 
connected with gene activation. Appropriate DNA methylation is 
necessary for the normal regulation and development of genome 
function [8-14].

Figure 3

Possible role of nutrition in DNA methylation [15-18]

•	 An appropriate DNA methylation is crucial for normal 
genome function, and hence aberrant DNA methylation 
can be considered as an epigenetic indicator of happenings 
such as disruptions in DNA integrity and stability, unusual 
chromosomal modifications, and mutation onset.

•	 Aberrant DNA methylation patterns and dysregulation of 
DNA methylation are present in many human diseases, 
including cancer, imprinting disorders, and developmental 
disabilities. 

•	 Folate, a B vitamin, is the main source of one-carbon group in 
DNA methylation. It also serves as the one-carbon source for 
other cellular methylation pathways (RNA, protein) and vital 
DNA processes such as synthesis and maintenance. 

•	 Rapidly dividing tissue tumors may be susceptible to low 
folate availability, resulting in hypomethylation. Low folate 
status is associated with decreases in DNA methylation, 
which in some studies has been associated with an increased 
risk of cancer, especially when tumor-suppressor genes are 
silenced because of this epigenetic change.

•	 The extent of folate deficiency and the efficacy of its 
supplementation on DNA methylation are precisely 
dependant on the gene and its site of epigenetic change. 
While other crucial factors such as the cell type, target 
organ, stage of transformation, and the degree and duration 
of folate depletion also have a significant role.

•	 Folate depletion can result in a destabilized DNA replication, 
as inadequacy of folate during cell division can compromise 
thymidine production substituting it with uracil in the 
DNA sequence. Such a mutagenic episode demands repair 
attempts which hike the incidence of chromosomal breaks. 
This concept has been proven in tissue culture studies 
wherein folate depletion has led to chromosomal breakage 
evidenced through micronuclei formation. The ‘TT’ genotype 
of MTHFR gene (rs1801133) might lead to increased 
micronuclei formation under low folate conditions, implying 
higher susceptibility to the detrimental effects of this 
epigenetic change.

•	 Low folate-mediated aberrant DNA methylation is a potential 
epigenetic contributor of Alzheimer’s disease and autism.
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Histone modification refers to the post-translational enzymatic 
modification of histone proteins through methylation, acetylation, 
phosphorylation, and ubiquitination. During gene expression, 
the extent of chromatin compactness is reliable on histone 
modification. Acetylation which usually occurs in the lysine 
residues conserved to N-terminal vitally modifies the histone 
proteins. For instance, acetylations of histone H3 at lysine residues 
9 and 14, and of histone H4 at lysine residues 5, 8, 12, and 16 
are associated with the activation or opening of the chromatin. 
However, de-acetylation of the lysine residues leads to chromatin 
compression and inactivation of gene transcription [19-25].

Figure 4

Possible role of nutrition in Histone modification

•	 Sulforaphane (SFN) is an isothiocyanate obtained from 
cruciferous vegetables like broccoli, cauliflower and Brussels 
sprouts. Sulforaphane has anticarcinogenic properties by 
potentially inducing Phase 2 detoxification enzymes. The 
SFN also has a protective role against epigenetic changes 
by inhibiting histone deacetylase/HDAC activity in human 
cancer cell lines of colon and prostate (with increased 
global and local histone acetylation status). In a research 
study, healthy subjects consumed a single serving (68 g) of 
broccoli sprouts. Nearly 3–6 hours after consumption, their 
circulating peripheral blood mononuclear cells showed 

an inhibition in histone deacetylase activity, alongside a 
concurrent induction of histone H3 and H4 acetylation [26]. 

•	 An in-vitro study on human colon cell lines with tumor 
showed an increase in histone H3 and H4 acetylation with 
high consumption of diallyl-disulfide from garlic [27].

•	 Both these studies suggest the positive effect of nutrients on 
epigenetic change, favouring activation of gene transcription.

•	 Other dietary agents such as butyrate, biotin, lipoic acid, and 
metabolites of vitamin E have structural features compatible 
with HDAC inhibition [2].

Other important nutrients that take part in DNA methylation 
and Histone modification

•	 Selenium has anti-cancer effects in the cell owing to its 
role in epigenetic modifications. Epigenetically, selenium 
activates methylation-silenced genes by modulating DNA and 
histones. Selenium has been shown to directly inhibit DNA 
methyltransferases (DNMT) expression and activity. Selenium 
potentially restores the expression of hypermethylated genes 
in human prostate cancer cells through down-regulation of 
DNMTs and inhibition of HDAC activity [28-35].

•	 Polyphenols can impact DNA methyltransferases, Histone 
acetylases and Histone deacetylases inducing reversibility of 
epigenetic dysregulation. 

•	 Green tea contains EGCG or epigallocatechin-3-gallate; EGCG 
inhibits the activity of DNA methyltransferase and reactivates 
methylation-silenced genes in cancer cell lines. Supporting 
evidence from in-vitro experiments with various cancer 
cell lines (prostate, esophageal, breast and colon), showed 
that numerous CpG islands of several loci were efficiently 
demethylated by EGCG, and consequently expressed 
previously silenced genes [36-39].

•	 Soy beans are also extremely rich in polyphenols 
(phytoestrogens like genistein, biochanin A, and daidzein) [40]. 
Soy polyphenols effectively inhibit DNA methyltransferases 
and histone deacetylases in cancer cell lines and potentially 
reverse aberrant CpG island methylation [41,42].

•	 In human endothelial cells, incubation with arachidonic acid 
modulated gene methylation, promoting an up-regulated pro-
angiogenic mechanism. On the contrary, polyunsaturated fats 
might suppress tumorigenic processes through dampening of 
inflammation and NF-kappaB pathway [43,44].
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Non-encoding Ribonucleic Acid (non-coding RNAs) aren’t 
translated into proteins. They are capable of dividing into 
housekeeping non-coding RNAs and regulatory non-coding RNAs. 
Ribonucleic acid with a regulatory role is predominatly divided 
based on its size, as either short chain non-coding RNAs (such 
as siRNAs, miRNAs, and piRNAs) or long chain non-coding RNA/
lncRNAs). Non-encoding RNAs are crucial players in epigenetics 
owing to their regulation at the gene expression level and at the 
level of chromosome to control cell differentiation [45-50].

Impact of physical activity on epigenetic changes

•	 Epigenetic mechanisms may be involved in mediating effects 
of physical activity. 

•	 Physical activity is shown to be associated with higher 
methylation in peripheral blood lymphocytes of LINE-1 
elements (a class of repeated sequences highly repeated in the 
human genome). While a low methylation in LINE-1 repetitive 
elements is linked with inflammation and chromosomal 
instability. 

•	 Elderly individuals who show high LINE-1 methylation 
in peripheral blood lymphocytes may experience lower 
incidence and mortality from ischemic heart disease and 
stroke. Implying this positive epigenetic change could be 
mediated by adequate physical activity.

•	 Exercise increases histone acetylation and alters non-coding 
RNA (miRNA) in such a way that it brings down inflammation 
[51-55].

Along with their susceptibility to external influences, 
epigenetic patterns are internally subjective with pivotal control 
centres predisposing to higher or lower capabilities in physical 
performance. Epigenetic effects may also play a considerable role 
in the determination of athletic potential.

Epigenetics and the circardian rhythm

CLOCK gene regulates circadian rhythm through a histone-
acetyltransferase activity. This promotes chromatin-remodelling 
events implicating circadian control of gene expression. The 
adjustment in circadian rhythm might get affected by factors like 
shift-work. Epidemiological studies have shown a negative impact 
of night-shift on the health and well-being of workers probably 
because of a mismatched endogenous circadian timing system 
and its environmental synchronizers such as the light/dark cycle. 

An epigenetic reprogramming of circadian genes probably alters 
endogenous circadian rhythms. A current research work in night-
shift workers illustrated alterations in blood DNA methylation, 
indicative of aberrant DNA methylation in inflammatory genes 
[56-61].

Epigenetics relates with a change in gene function caused by 
alterations in the DNA (addition of chemical compounds, such as 
methylation, acetylaion, etc..) unaccountable for sequence change. 
This change is applauded if it enhances gene function favourably, 
promoting good health. Nutrients modify epigenetic mechanisms, 
suggesting a scope for teering epigenetics in a health-promoting 
way.
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