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Abstract

Tuberculosis caused by mycobacteria(s) of the complex of Mycobacterium tuberculosis (MTBC) nowadays represents a problem 
in public health. The scenery is worsened by comorbidities and the rise in multidrug-resistant strains (MDR). Despite this, recent 
reports have highlighted the emergence of high-throughput alternatives to potentiate diagnostic and more effective treatment, such 
as omics technologies. Indeed, current Omics technologies allow a deep analysis of the dynamics of gene expression, proteins, and 
metabolites The gene expression profiles along with the type of blood samples versus stools and sputum can make a difference in the 
diagnosis because they represent a window into the molecular signature of cell tissue or organ-specific. The integration of omics data 
with artificial intelligence methodologies (i.e., machine learning, deep learning, big data analytics, and neural networks) can generate 
algorithms as a biological language model to evaluate, and predict embed numerical representation of the data generated from omics 
technologies addressing the host-pathogen interface. The objective of the present review is to pinpoint how the omics technologies 
has been contributing to the dissection and understanding on this. At the same time, emphasize the use of AI to accelerate this. This 
review was based on searches and data from the PubMed database from 2020 to 2025. The result was a landscape of the milestones 
of omics and AI in TB. These advances in both or individually can support and potentiate enormously the diagnostic and treatment 
in TB.
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Introduction

Tuberculosis (TB), is an ancient infectious disease dated from 
Egyptian mommies [1], caused by the etiologic agent M. tuberculo-
sis (Mtb). It represents a health problem in underdeveloped coun-
tries as well as in developed countries. It is one of the 10 leading 
causes of mortality worldwide caused by a single pathogen [2]. The 
most recent mortality registered ranged from 1 to 5 million, while 
approximately 10 million individuals developed active TB [1,2]. A 
quarter of the world’s population develops latent tuberculosis 
with a probability percentage of 3 to 10% of reactivation [2,3]. Ac-
cording to recent data from WHO [1] in 2023-2024, people who 
develop Tuberculosis accounted for 87% of the global amount. The 
scenery is worse because of the emergence and increase in multi 
drug resistance (MDR) and super extensive drug resistance (XDR) 
to the first line and even second line of antibiotics [7]. On the other 
hand, the only vaccine against human tuberculosis is the Bacillus 
Calmette Guerin-based vaccine or BCG-vaccine, the only effective 
and officially approved prophylactic measure [8]. However, the 
BCG vaccine protect children from different forms of TB. Memory 
fades as they grow and, practically in adulthood, there is no immu-
nological memory, and therefore the risk of developing active TB 
is high [8-11]. A hotspot in the TB vaccine (TBVAC) development 
is the route of administration. If the bacillus enters via the upper 
airways, the mucosal and the systemic immune system is activated 
and triggered [9-13]. However, in a recent report it has been re-
ported that intravenous BCG vaccine administration to Macaques 
rhesus and aerosol challenge with Mtb have induced protective 
antibodies [13,14]. On referring specifically to how to potentiate 
the diagnosis of human TB is necessary to gain knowledge of the 
Mtb susceptibility of the host to mycobacterial infections [14,15]. 
The success of transmission could reflect pathogen adaptation to 
the host, strengthening the theory that there has been a co-evolu-
tion of the pathogen with its host at molecular and immunological 
level, and thus, the eradication of the pathogen is not an easy task 
and require the understanding and elucidation of the molecular 
mechanism of pathogenicity for the development and design of 
vaccine and immunotherapies to halt the transmission and to ham-
per the antimicrobial resistance [15-17]. Indeed, the Mtb strain 
genotypes could also influence the multidrug-resistant capability 
of the strains and, indirectly, antibiotics-based treatment [18-20]. 

The host genetic variability to mycobacterial infections leads to 
the establishment of a framework in the dissection and knowledge 
of the immune pathogenesis of TB [21]. On the other hand, omics 
technologies in conjunction with immunological parameters can 
aid to dissect blood cells subsets that are playing a role in the host 
immune response against Mtb [5,8,22,23]. Studies using single-cell 
transcriptomics and T cell receptor sequencing are being contrib-
uted and highlight that all major cell clusters (mononuclear cell 
populations) are present in both, pleural fluid and peripheral blood 
of Extra Pulmonary Tuberculosis (TPE) patients [22-24]. Another 
contribution of the omics technologies is toward the biology of the 
TB infection and the host pathogen interaction, specifically refer-
ring to the bio signatures, in non-and immune cells, i.e., monocytes, 
and granulocytes at transcriptional, and epigenetic level (DNA 
methylation, and microRNA) [24,25]. Furthermore, the integration 
of omics technologies such as metabolomics and transcriptomics 
can inform us about the physiological level of the metabolites and 
signalization pathways at the immunological level of the host re-
sponse and this can be used either as basic or applied knowledge 
[18-20,22]. Moreover, it can provide information about the capa-
bilities of Mtb to escape and transverse the harsh, stringent, het-
erogeneous niches, and the microenvironment in humans, as well 
as the expression of virulence factors for the extra pulmonary dis-
semination [3,5,7,26,27]. It can provide information of the viru-
lence factor involved in the molecular mechanism of pathogenesis, 
such as the analysis of the secretory system in the pathogen, the 
efflux bombs, the cell wall composition, in the genetic variability of 
the different clinic isolates which can provide valuable information 
of the resistance mechanism [2,6-8,27]. Overall, these technologies 
can aid in the identification of correlates of immune protection 
(biomarkers) and progression of TB disease. Along with the multi 
omics integration approach can be facilitated through the use of AI-
based approaches, to integrate large amounts of quantitative and 
omics data. Artificial intelligence (AI) methodologies such as deep 
learning (DL) (simple interconnected units), machine learning 
(ML) (based on algorithms for the processing of many parameters, 
e.g., images, biomarkers, immunological), Big Data Analytics (BDA) 
and Artificial Neural Networks (ANN), might give input to the pro-
cessing and analysis of the data and images to potentiate the prog-
nostic, diagnostic, and vaccine development [22-27], of paramount 
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importance, for the development of rational TB treatment regimens 
especially novel host response-directed therapeutics [22-27]. In 
the present review, it is pinpointed both the advancement and de-
velopment of the omics and the AI, in addressing the mechanism 
of TB immunopathogenesis to potentiate enormously diagnostic 
and prophylactic/therapeutic vaccines. Therefore, after the intro-
duction to the three main issues, Tb, omics and AI, we pursued to 
first pinpoint the main aspects of the host response upon infection 
with M. tuberculosis, the main target to be deal with, followed by the 
milestones of omics and AI, and the implication on diagnostic and 
development of treatments. 

The host-pathogen interaction interface in Tuberculosis
The general hallmark of the host immune response upon Mtb 

infection is the co-existence with the host immune response that 
results in an inflammatory response induced by the pathogen. Sev-
eral studies in the different animal models and clinical studies have 
proposed that there are some basic requirements for the molecular 
mechanism of Tuberculosis [8,14,26,27-29] that includes the mo-
lecular and cellular components of the host immune system, innate 
and adaptive. 
•	 The initial molecular recognition, upon air droplet entrance 

and ingestion by upper airway cells, bacilli is internalized by 
the alveolar macrophages [14,29-34], with a molecular rec-
ognition in first term. The molecular interaction between the 
pathogen-associated mediated patterns (PAMPS) and the pat-
terns of recognition receptors surface (PRRS) on antigen pre-
senting cells (Macrophages, and Dendritic cells). 

•	 The PAMPS on the pathogen surface such as the mycobacterial 
glycolipids (lipoarabinomannan (LAM), lipomannan (LM), 38-
kDa and 19-kD mycobacterial glycoproteins, phosphatidylino-
sitol mannosidases (PIM), tri-acylated or di-acylated, lipopro-
teins, recognized by (TLR2/TLR1) or (TLR2/TLR6) [27-29]. 

•	 The PRRS on the antigen presenting cells as -TLRs receptors 
located on cell membranes or intracellularly (TLRs),TLR2, 
TLR4, TLR9, and possibly TLR8. TLR2 can form heterodimers 
with both TLR1 and TLR6 [29-34]. Receptors are the C-type 
lectin receptors (CTLRs) (e.g. mannose receptor): -Receptors 
located in the cytoplasm, NLRs, the CD207, and the IPAFs [28-
34].-the cytoplasmic proteins such as the Retinoic acid-induc-

ible gene, (RIG)-I-like receptors (RLRs),-The receptor on the 
Dendritic cell-specific intercellular adhesion molecule grab-
bing non-integrin (DC-SIGN) and Decti-1), -The phagocytic re-
ceptors, such as FC-γg receptors, the complement receptors, 
and the scavenger receptors [29-34]. 

 
The host innate immune response upon M. tuberculosis infec-

tion. After the initial molecular interaction as pinpointed above 
[71,73,87-89], the recruitment of the innate immune cells at the 
site of infection allows control of Tuberculosis infection at very 
early times, maturation, migration of APC, and the expression of 
the costimulatory molecules, but it also allows the infected APCs to 
maintain an inflammatory state that is like a depot effect for clear-
ance and elimination of Mtb [29,30,34,35]. 

Microbicides innate mechanism of the host response, such as 
phagosome-lysosome fusion, autophagy, oxidative stress, antigen 
processing, inflammasome activation, antigen presentation by 
MHC class I, class II, and CD1 (glycolipids presentation, cross-prim-
ing) [31,32], production of nitric oxides [92] and other reactive inter-
mediates that eventually will favor an inflammatory state to continue 
in a replicative state (active infection) [29,31,34]. Innate mechanisms 
of the host response, such as phagosome-lysosome fusion, autoph-
agy, oxidative stress, antigen processing, inflammasome activation, 
antigen presentation by MHC class I, class II, and CD1 (glycolipids 
presentation, cross-priming) [31,32], production of nitric oxides 
[92] and other reactive intermediates that eventually will favor an 
inflammatory state to continue in a replicative state (active infec-
tion) [29,34], while in macrophage infection, there are mainly pro-
inflammatory cytokines, and the activation of the macrophages 
elicited several other cytokines, IL-18 and IL-12, for continuous 
activation of macrophages and naïve CD4+ lymphocytes, the Th 
(helper T cells). Th1 cells that upon activation induce the produc-
tion of IFN-γ and TNF-α at the same time, macrophages produce 
oxide nitric (NO) [30-34] (Figure 1A), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), chemokines (CXCL1, CXCL5, 
CCL2, and CCL7), antimicrobial peptides, which mediate the activa-
tion and recruitment of inflammatory cells [35,36]. In addition, the 
innate mechanism includes reactive O2 species and the activation 
of the proteasome for antigen processing [30,36-38] (Figure 1A). 
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Figure 1a: Upon infection, M. tuberculosis enters via the upper airways as particle droplets, followed by the uptake by the alveolar mac-
rophages, which reach the local bronchi alveolar(s) in the lung, and replicate. The recruitment of the innate immune cells at the site of 
infection allows in principle control of Tuberculosis infection at very early times, maturation, migration of APC, and the expression of the 
costimulatory molecules, microbicides innate mechanism of the host response, such as phagosome-lysosome fusion, autophagy, oxida-
tive stress, antigen processing, inflammasome activation, antigen presentation by MHC class I, class II, and CD1 (glycolipids presentation, 
cross-priming), production of nitric oxides and other reactive intermediates that eventually will favor a inflammatory state to continue in 
a replicative state (active infection). Moreover, the production of antimicrobial peptides, such as beta-defensins and cathelicidins by the 
airway epithelium and alveolar macrophages, play a role not only in the bacterial elimination but also in the recruitment and activation 
of diverse immune cells(human {beta}-defensin-2, expressed and associated with Mycobacterium tuberculosis during infection of human 
alveolar epithelial cells. The cytokines, like the chemokines, influence the behavior of the innate cells and their recruitment of innate cells 

to the site of infection, linked with adaptive immunity.

The activation and the production of a set of cytokines reach 
and allow the differentiation of the helper T cells to T helper 17 
(Th17) cells interleukin-17 (IL-17) producers [39-43].

In latency, the granuloma can sterilize the infection, becom-
ing sclerotic and calcified, whereas in active Tuberculosis, granu-
lomas are necrotic and have a caseous appearance. Latent bacilli 
coexist for survival with immune and nonimmune cells, including 
fibroblast and epithelial cells [18,29,30,44]. Myeloid cells con-
tinue to provide a safe, persistent, and survival niche for the es-
tablishment of the bacilli in the granuloma in the lung and tissues 

[18,29,30,31,34,35,44,45]. The bacilli remain quiescent in a non-
replicative state [32,38] at the level of the lung, and occupies the 
majority of its decades-long life cycle in a state of slowed or ar-
rested replication [1,4,7] (Figure 2B). However, the role of other 
targeted tissues targeted is the inducible bronchus-associated 
lymphoid tissue (BALT), a lymphoid tissue that contains B-cell fol-
licles found in inflammatory lung diseases [41,45]. A recent report 
proposed that the proximity of BALT to the lung granuloma could 
influence the B cell follicles in BALT for protection against TB in 
addition to interferon-gamma (IFN-γ) [17-19,29]. While TNF-α is a 
pro-inflammatory cytokine required for an organized formation of 
granuloma [29,34,46] (Figure 1B). 
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Figure 1b: The latent stage of the TB infection, is featured by the activation of the cellular response, once after the Mtb have triggered a 
pro-inflammatory response, with the induction of pro-inflammatory cytokines important to keep an activated state of the macrophages, 
and for the differentiation of the naïve CD4+T cells toward Th1, Th2, Th3, Th17. In this stage the host response is toward the balance to 
bacterial killing, avoid tissue damage and bacilli persistence through the formation of the granulomes. The different subsets of CD4+, the 
CD8+ T cells, the NK cells, the γδ-T cells all are involved in the production of the IFN-γ, and other cytokines that are important to initiate, 
activate and control the cellular response to Mtb (IL-23, IL-27). In addition, the balance in the levels of the induction of pro-inflammatory 
(TNF-α, IL-12, IL-18) and protective cytokines (IL-17, IL-23) are exploited by Mtb for intracellular survival in the granulome and as a 

molecular off switch of the host immune system. 

Furthermore, besides the cellular and molecular components 
that can be followed and detected, the dormancy regulon, and es-
pecially those dedicated to providing energy, the encoded phospho-
lipases [46], the two-component system, Pho P, and Pho Q [47], the 
phosphate-binding proteins Pst1 and PstS2 [48] and the proteins 
encoded by operons [46,47] could be targeted [36]. Thus, the host 
immune response could be raised at glance by the tuberculin skin 
test (TST) and the delayed hypersensitivity test (DHT) to mycobac-
terial antigens [22,48-56]. These tests is the extent to which these 
might reflect or predict the likelihood of developing active disease. 
This possibility remains a mystery because the subtle molecular 
balance between the bacilli and the host interaction is such that the 

latent bacilli are maintained, under certain conditions, and for cell 
cycle replication, and is lauded to reenter the cell cycle to ensure its 
propagation as a species [3,7,14,28,29,35,45,46].

Omics technologies to address the host immune response 
to Mycobacterium tuberculosis infection

Omics technologies represent a key technological advance that 
have led the development of personalized medicine by providing 
an unprecedented amount of data enabling to dissect the molecu-
lar basis of many diseases and tracing detailed patients ‘molecular 
signatures on a system biology scale [22-24,57]. The technologies 
that follow the signature and imprinting of the interaction host-

06

Omics and Artificial Intelligence Addressing Host Immune Response in TB

Citation: Gloria G Guerrero M., et al. “Omics and Artificial Intelligence Addressing Host Immune Response in TB". Acta Scientific Microbiology 9.1 (2026): 
02-24.



Figure 2a: The milestones in the use of omics technologies for TB dated from the genomic sequencing of M. tuberculosis allowing to 
determine the genes involved in the mechanism of molecular pathogenesis. Later on, transcriptomics, and metabolomics lead to a more 
precise understanding of the regulation of the genes that are being up or down regulated, or in the case of the metabolomics allow the 
metabolites that are being produced in response to the infection. Epigenomics started to take a role in approaching TB by 2015, a step 

forward in the understanding of all the epigenetic regulation in active and latent infection. 

2a

pathogen, spatial, and multidimensional analysis include single-
cell RNA-sequencing (scRNA-seq) and combinatorial multimodal 
analysis of surface proteins and cellular transcriptomics [57,58]. 
Examples are the cellular indexing of transcriptomes and epitopes 
(CITE-seq) and accessibility analyses throughout transposase-ac-
cessible chromatin (ATAC-seq) assay [46]. In terms of infectious dis-
eases, elucidate the mechanism of pathogenicity [14,21,27,56-58] 
and the imprinting of the signature at the interface host-pathogen 
[23,24,59-63], and thus, gain insight and integrate the knowledge 
at the interface of the interaction that leads to disease [29,61-63]. 
Moreover, the Human Tuberculosis study, through the perspective 
of One Health [1,2], consists of, 1) the unification and integration of 
cellular and molecular tools applied to animals [29,45,54], 2) the 
integration of the factors that affect the progression of the disease, 
3) the identification of genetic markers, and biomarkers for diag-
nostic and prognostic purposes [27,29,59,61-63]. 

One health to integrate the “ome” host response rather than 
isolated features of the adaptive immune response through new 
generation high-throughput sequencing to obtain the complete 
transcriptome (RNA Ome) [63,64] or complete quantification us-
ing microarrays [65] in cells from blood samples and mucosal flu-
ids [27,29,62-64]. The use of the multi-omics technologies allows a 
deep insight of several processes such as:

•	 The dynamics of cells and molecules, of the signaling path-
ways [56,57] involved in the interaction host-pathogen 
interface, the architecture, the topography of the immune 
cells in the lymphoid tissues (primary, secondary, and ter-
tiary) 

•	 The quantification of the repertoire of antibodies and 
receptor(s) in T and B cells, and

•	 The profile of the subset of antigen-presenting cells and 
lymphocytes under specific settings

The technology of the siRNA-seq analyses allows the determina-
tion of the identification and characteristics of clonal populations 
of T and B cells toward an antigen (a pathogen, microbial, fungi, 
viral to a vaccine candidate, and their association with different 
disease susceptibilities or states, as well as their capacity to mi-
grate into tissues lesions [22,23,28,29,58]. A pioneer work on this 
has been the role of type I interferons signature in neutrophils of 
active TB patients [60]. A milestone in terms of new-generation 
Sequencing (NGS) is that millions of genomic or transcriptomic se-
quences can be analyzed at the same time, speeding the analysis 
of different organisms and different experimental and clinical set-
tings [64-67] (Figure 2A). RNA-Seq technique allows transcriptom-
ic profiles from cDNA libraries with the advantage of not reference 
genome for bioinformatics analysis, or no prior information on the 
transcriptome of either of the two species that are going to be ana-
lyzed [62,64] with higher levels of reproducibility [27,29,66,67]. It 
allows the identification of a large number of highly informative 
molecular markers. A set of expressed sequence tag (EST)-derived 
simple sequence repeat (SSR) and SNP EST-SSR and SNPs), associ-
ated with functional genes, making them applicable to adaptation 
studies. The identification of mutations and polymorphisms rep-
resent potential genetic markers for molecular diagnosis of hu-
man TB [14,15,21,29,60,63,68-70]. As it is outlined in Figure 2A, 
the contribution of each omics technology started in 1998 with the 
Mtb sequencing and the human genome sequencing (2003) allow-
ing to unveil for one side the molecular components involved in the 
immune pathogenesis and for the other side, to dissect the genetic 
susceptibility to mycobacterial diseases (e.g., mutations in the in-
terferon gamma receptor, MyD88, NEMO, and many other compo-
nents in the pro-inflammatory pathway). From to 2015 of the use 
of the different omics technologies in TB mechanism of pathoge-
nicity increased significantly, specifically at the level of epigenetics 
and how this is modulated by Mtb for success and long term sur-
vival in the lung [21,29,70]. 
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Genomics
Since its introduction in 2010, next-generation sequencing 

(NGS) has become a foundational technology in genomics by pro-
viding detailed structural information about genomic variants 
[21,72,73]. Building on this foundation, NGS enables the detection 
of mutations and polymorphisms, which serve as genetic markers 
for the molecular diagnosis of human TB. Structural genomics sup-
ports the identification of single-nucleotide polymorphisms (SNPs) 
for strain typing of MTBC lineages and for determining drug resis-
tance profiles. These applications facilitate the development of tar-
geted diagnostic tools and inform treatment strategies in clinical 
research. Furthermore, to inform about how structural genomic in-
formation can influence and modulate the host-pathogen interac-
tion, WGS using a DNA platform provides a more complete account 
of the genomic features of the Mtb-infected resistance population 
[64,72,73]. Moreover, using WGS analysis, several gaps are being 
approached: the evolving nature of drug resistance in TB, the resis-
tance population to both first-line and second-line anti-TB drugs, 
and the genetic susceptibility to mycobacterial infections in hu-
mans through genome-wide studies [14,21,72-75]. Under this con-
text, WGS-based approaches are quickly moving from research lab-
oratories to clinical care and public health applications [64,71,76]. 
Thus, WHO is already using WGS for drug resistance surveillance 
and is scheduled to evaluate sequencing technologies for routine 
genotypic DST [1,76] and for accurate predictions for resistance to 
pyrazinamide, ethionamide/prothionamide, and para-amino sali-
cylic acid, respectively [77-81]. The impact of this is that bona fides 
of NGS allow millions of genomic or transcriptomic sequences at 
lower time and reduced cost [77-83] (Figure 2A, 2A.1). 

Metagenomics
Next-generation sequencing (mNGS). One of the most signifi-

cant milestones of metagenomics is that, despite rapid molecular 
methods such as PCR and LAMP, rapid advances in NGS technol-
ogy are allowing increasingly rapid and accurate sequencing of 
entire bacterial genomes at ever-decreasing cost, providing un-

precedented depth of information [84-87]. mNGS under different 
settings can provide information about significant dynamic chang-
es in the clinical manifestation of TB in the progression of the dis-
ease, and recurrent antibiotic treatment. A significant advantage 
of mNGS is its ability to sequence microorganisms that cannot be 
cultured under standard laboratory conditions. This method has 
improved the detection of pathogenic infections, such as Non-Tu-
berculous Mycobacterial (NTM) and in severe cutaneous TB cases 
[88-91] (Figure 2A.1.). In addition, similar to targeted next-gener-
ation sequencing (tNGS), mNGS enables the identification of spe-
cific pathogens in clinical samples through multiplex polymerase 
chain reaction (PCR) amplification or probe capture, resulting in 
high sensitivity and greater efficiency [92]. Indeed, it has been re-
ported that through the use of mNGS is that it has been possible 
to confirm conventional metagenomics in 101 of 123 TB patients 
[19,85,86,88-90], with bacteriologically and clinically, supporting 
thus, the notion that NGS stands to revolutionize the diagnosis and 
epidemiological study of TB. Furthermore, to address the role of 
the lung microbiota in the immunomodulation of the host response 
in TB [84], especially in active or severe patients [85]. Thus, using 
BALF samples and sequencing shotgun metagenomics, it has been 
possible to assess alterations in the lung microbiota associated 
with TB infection. It has been observed that anti-TB treatment sig-
nificantly affects the alpha and beta diversity in patients with PTB 
[85]. Moreover, determination of lung microbial signatures in cells 
from the upper airways provides unique features of lung microbial 
dynamics and clinical characteristics of TB patients, providing thus 
new insights for medicine of precision [19,85-90]. From the mile-
stones, metagenomics have advanced in the last decade favoring 
the microbiome analysis in the host immune response to different 
external insults (Figure 2A.1,2A.2).

Epigenomics
Epigenetic processes refer to modifications in gene expression 

that are regulated by distinct microenvironments within the body, 
such as neuroendocrine alterations, oncogenic activity, and expo-
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Figure 2a.1: From 2016 started the bump in the use of the omics technologies to address the host response to MTb either whole blood 
cells (PBMCs) from patients with active or latent infection, or in animal models, in addition to investigate the different therapeutic or 
profilactic effects of the secondary metabolites or vaccines. From this year to 2021, the studies and the milestones were focused mostly 
in transcriptomics, followed by metabolois, and epigenomics. It was until 2021 that it started to use metagenomics to determine the 

microbiome and the interaction of the lug microbioma with M. tuberculosis.

sure to chemical substances. These mechanisms are particularly 
significant in the context of host-pathogen interactions during the 
development and progression of tuberculosis. Epigenetic regula-
tion of host chromatin facilitates granuloma formation, thereby 
promoting the survival and persistence of Mtb [89-92]. Conse-
quently, this intracellular pathogen has developed a mechanism 
to modulate and regulate the host’s epigenetics, which facilitates 
the pathophysiology of tuberculosis and contributes to host sus-
ceptibility to the pathogen while also activating the host immune 
response against the invading organism, resulting in active disease. 
Under this scenery infected macrophages subsequently enhance 
their effector functions through epigenetic changes, making DNA 
more accessible for transcription [89-92]. Expression of these 
markers occurs in host-infected macrophages during pathogen 
recognition, phagocytosis, and degradation within the phagolyso-
some, activation of the inflammasome, and proteasome-mediated 
antigen processing and presentation [93-95]. Epigenetic studies 

in active disease have indicated that infected macrophages en-
hance their effector functions through epigenetic alterations (in-
creased hyper-methylation of IL6R, IL4R, and IL17R) that render 
DNA more accessible for transcription [19,96-102]. In addition, the 
shift in metabolism towards glycolysis and the secretion of pro-
inflammatory cytokines are effector functions that are also regu-
lated by epigenetic modifications. This plays a crucial role in the 
macrophage’s capacity to effectively respond to Mtb infection, and 
represent promising biomarkers for diagnostic and therapeutic 
strategies in infectious diseases. In addition, it has been shown that 
suberanilohydroxamic acid (SAHA), an FDA-approved oral drug in-
hibiting histone deacetylase enzymes (HDACi), can alter epigenetic 
mechanisms prior to the metabolic switch and enhance immune 
responses during Mtb infections [93,96,99,102] (Figure 2A.1.). 
Furthermore, modifications such as histone acetylation, changes in 
non-coding RNA, DNA methylation, and variations in miRNA play 
significant roles in the pathophysiology of tuberculosis and influ-
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ence the infection’s outcome [93,95]. The challenge lies in identify-
ing the key host proteins, non-coding RNAs, or secretory proteins 
produced by Mtb that either directly or indirectly induce epigenetic 
modifications in the host chromatin, as a strategy to navigate and 
coexist with the immune response [25,26,93-98], thus promot-
ing its survival and spread. Thus, the integration of this research 
with other omics technologies has facilitated the identification 
of various molecular genetic markers and biomarkers related to 
both active and latent infections. To the identification and recog-
nition of host proteins, non-coding RNAs, and secretory proteins 
that directly or indirectly contribute to epigenetic modifications 
[25,26,95,96]. In resistant individuals there is a latency stage char-
acterized by epigenetic regulation of host chromatin that promotes 
the development of granulomas, which are comprised of immune 
and non-immune cells (Figure 2A,2A.1).

It is a strategy to coexist with the host immune system and long-
term persistence and survival of Mtb [93,94]. Studies conducted to 
study the mechanisms involved in the suppression of various im-
mune genes, epigenetic studies included the identification of mi-
croRNAs and the analysis of regions upstream of the transcription 
start sites of these genes for common sequence motifs. This insight 
sheds light on the survival strategies of Mtb within infected cells, 
characterized by a sophisticated immune “molecular switch off” 
regulated by both microRNAs and Alu sequence repeat elements 
transposable (Figure 2A.1).

Transcriptomics
Transcriptomic analysis can be conducted to investigate the 

spectrum of the disease, the regulation of gene expression during 
host-pathogen interaction, and the host immune response. This can 
inform about patterns and signatures to predict outcomes of the 
disease severity and progression, and henceforth be a tool for diag-
nosis and treatments [103-106]. The fundamental scientific princi-
ple of transcriptomics involves the analysis of RNA, utilizing meth-
ods such as exome sequencing and microarrays to quantify RNA 
transcripts in specific cells or peripheral blood during active, se-
vere, or latent infections. This understanding provides insights into 
how the host’s immune response is modulated during and across 

different stages and clinical sub-stages of Mtb infection. The RNA-
Seq technique facilitates the generation of transcriptomic profiles 
from cDNA libraries, offering the benefit of not requiring a refer-
ence genome for bioinformatics analysis, even in cases where there 
is no prior knowledge of the transcriptome for either of the two 
species under investigation. Additionally, RNA-Seq does not have 
a maximum quantification limit and demonstrates greater repro-
ducibility [141,145,146]. It facilitates the identification of a wide 
array of highly informative molecular markers [63,65,103,104]. 
This method allows us to explore the host-pathogen interaction 
through the analysis of transcripts and transcriptional signatures 
at the interface of systemic and mucosal compartments [103-109]. 
For instance, during an active or primary infection, the bacteria 
localize to specific sites (typically the lungs) and are associated 
with clinical symptoms [103,104]. The transcriptional signature 
can serve as a valuable tool for diagnosing and predicting the pro-
gression of active TB disease [108,109]. In terms of the host im-
mune response, the integrated analysis of single-cell transcrip-
tomes and T cell receptor profiling during the immune response 
reveals the presence of T cell exhaustion deficiencies in patients 
with pulmonary tuberculosis [107] in both CD4+ and CD8+ and in 
clonally expanded CD4+ and CD8+T cells that also expressed the 
cytolytic markers granzyme (GZMK) and perforin [107]. In addi-
tion, this study provided insights into the transcriptional signature 
associated with the type I IFN pathway in neutrophils of active TB 
patients compared to healthy individuals, contributing to under-
standing the intricate immune pathogenesis involved in active TB 
(Figure 2A,2A.1). 

The transcriptome that provides insights into the non-invasive 
and quiescent phenotype, contrasting active infection with dor-
mancy, reveals changes when the bacteria reach an extra pulmo-
nary site, such as the ocular environment. The genes associated 
with active replication, aerobic respiration, and lipid metabolism 
are either significantly downregulated or show no differential ex-
pression. Thus for example, it has been reported that in AIOF (a 
specific cell or niche environment) exhibits a downregulation of 
genes from the DosR regulon, suggesting a suppression of dorman-
cy, similar to what is observed within RPE cells [47,48,105-109]. 
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Of note is that when M. tuberculosis infects human whole blood, 
there is suppression of gene transcription rather than activation, 
affecting the spatial and functional effector functions. This reveals 
their role in the mechanism of host immune response, such as up-
take, phagocytosis, activation of the proteasome, and antigen pre-
sentation. Interestingly, when clusters of alveolar macrophages 
in the lung are infected, a different landscape has been observed. 
Instead of a transcriptional signature, an epigenetic pattern of 
restrictive response to infection has been found. Furthermore, 
through transcriptomics, it has become possible to identify im-
mune protection correlates, particularly emphasizing the impor-
tance of cells expressing the IFN-γ receptor in protective immunity 
[105-109] (Figure 2A,2A.1). 

Various factors (environmental, genetics, age, and co-infec-
tions) can influence these cells’ ability to respond to IFN-γ, affect-
ing their cytokine response capacity and, henceforth, a decreased 
immune response to MTb infection. On other hand, in comorbidi-
ties of TB and DM, transcriptional data have shown that several 
molecules, including lipocalin (LCN2), defensin alpha 1 (DEFA 1), 
and integrin subunit alpha 2b (ITGA2B), were notably upregulated, 
while chloride intracellular channel 3 (CLIC3) was significantly 
downregulated. Moreover, interleukin 17 (IL-17) and other signal-
ing pathways such as phosphatidylinositol 3-kinase (PI3K)-AKT, 
and peroxisome proliferator-activated receptor (PPAR), have been 
found to play significant roles in the management of post-infection 
with DM. Thus, the transcriptional profile can be utilized to moni-
tor the progression of tuberculosis disease and to discover novel 
immune mechanisms [47,48,92,105-109] (Figure 2A.1).

Proteomics
In recent years, research has focused on understanding how the 

proteome is affected during host-pathogen interactions in TB. It has 
been suggested that gaining a deeper insight into how genome-en-
coded functions are carried out and adjusted at the proteomic level 
could greatly aid in the development of therapies targeted specifi-
cally at TB [109-112]. The modulation of the proteome through 
epigenetic alterations, commonly referred to as post-translational 
modifications (PTMs), these include processes like phosphoryla-
tion, particularly in proteins linked to chromosomal instability. No-
tably, protein acetylation (Ac), especially lysine acetylation, plays 
a role in regulating cellular metabolism [92,93,180]. Ac is recog-

nized as a modification affecting numerous proteins, both histone 
and non-histone, found in various cellular compartments, includ-
ing the nucleus, cytoplasm, and mitochondria, and it is involved 
in a range of functions from gene regulation and cell signaling to 
metabolism in both normal and pathological contexts [47,113-
115]. A recent innovation involves the integration of diverse omics 
technologies to offer a comprehensive synthesis of genomic, tran-
scriptomic, and proteomic data, ultimately elucidating functional 
relationships between genes and proteins [112,113]. Nevertheless, 
this technology faces certain constraints, particularly because pro-
teomic data is not as plentiful as genomic data. To address these 
challenges, three methodologies have emerged: 1) Techniques like 
reverse phase protein arrays (RPPA) that enable the simultaneous 
collection of semi-quantitative data for a larger number of proteins 
in biological and clinical samples [111]. 2) This process entails 
the application of protein lysates to nitrocellulose, allowing for 
the quantification of selected proteins or phosphoproteins across 
multiple samples under identical experimental conditions. 3) The 
SOMA scan assay serves to quickly quantify a specific set of pro-
teins, primarily aimed at identifying biomarkers for two significant 
purposes: facilitating preclinical and clinical drug development, 
and supporting clinical diagnostic applications related to various 
diseases and conditions [110-112]. Mass spectrometry-based pro-
teomics (MSP) can provide insights into the quantitative status of 
a proteome by accurately identifying the primary chemical struc-
tures of proteins or peptides, including various post-translational 
modifications that may go undetected. This technology has played 
a significant role in deciphering cellular signaling networks, clari-
fying the dynamics of protein-protein interactions in numerous 
cellular activities, and improving the understanding and diagnosis 
of disease mechanisms [114,115]. Therefore, mass spectrometry 
(MS)-based methods have become the preferred choice over the 
last twenty years for reliable and nearly comprehensive identifi-
cation and quantification of proteins in biological samples. One of 
the advantages of the MSP ) is that it offers valuable information 
regarding the true biochemical environment of the specific cell or 
tissue, as it enables the quantification of small molecules [112], 
and it can identify the primary chemical structures of proteins or 
peptides that contain multiple PTMs. The limitations of discovery 
proteomics are currently being addressed by targeted proteomics 
using two methodologies, a selected/multiple reaction monitoring 
(S/MRS) [112] and parallel monitoring (PRM) [112]. These allow 
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for consistent and precise quantification at low abundance levels 
and in complex mixtures. It is particularly effective for personal-
ized medicine when measuring a small number of proteins across 
a large volume of patient samples [47,48,113]. Additionally, discov-
ery proteomics can be utilized to explore the interactions between 
hosts and pathogens, particularly concerning the impact of PTMs 
during the interactions. This involves the use of both top-down and 
bottom-up approaches. Top-down proteomics examines the com-
plete sequence of the proteins being studied, aiming to minimize 
any alterations to the sample. Bottom-up proteomics relies on the 
pre-digestion of samples (usually using trypsin) followed by the 
examination of peptide fragments through high-throughput ana-
lytical techniques [47,48,113]. It is crucial to gather comprehensive 
data on the proteins being monitored throughout the interaction, 
both in the early and late stages after infection, as these may serve 
as potential targets for specific quantification, necessary for diag-
nostic purposes [89-112] (Figure 2A.1).

On the other hand, proteomics to explore host’s immune re-
sponse upon in TB, offer an in-depth understanding of protein dy-
namics to clarify their roles and functions in this interaction. By 
analyzing data computationally, various potential T and B cell epi-
topes were identified, which were subsequently tested in vitro and 
demonstrated immunogenicity with the ability to influence innate 
immune responses [15-17]. This particular protein enhances the 
maturation of dendritic cells by elevating the expression of activa-
tion markers such as CD80 and HLA-DR while reducing DC-SIGN 
expression, with this interaction being facilitated by the innate 
immune receptor TLR2. Mining the human proteome in TB infec-
tion has led to findings such as: 1) a protein capable of influencing 
innate immune responses and promoting dendritic cell matura-
tion by enhancing the expression of activation markers like CD80 
and HLA-DR, while reducing DC-SIGN expression through the in-
nate immune receptor TLR2,2) the immunodominant Mtb antigen, 
MPT70, was found to be upregulated in macrophages infected in 
vitro in response to gamma interferon (IFN-γ) or conditions of nu-
trient and oxygen deprivation. In vivo studies indicated that the 
serum levels of MPT70 in tuberculosis (TB) patients revealed high-

er IgG reactivity or detection in comparison to healthy controls. 
Furthermore, the changes and immunogenic properties of the 
Mtb proteome has been reported to be linked with the dormancy 
survival regulator (DosR) and the resuscitation-promoting factor 
(Rpf) [22,29,47,48,113]. 

Among the proteins that contribute to the evasion of Mtb is 
Rv2626c, also referred to as hypoxic response protein 1 (HRP1) 
or dormancy safety regulator protein. These antigens can sup-
press TLR4 inflammatory signaling in macrophages by binding to 
the RING domain of TRAF6, thereby hindering lysine (K) 63-linked 
polyubiquitination of TRAF6, which affects E3 ubiquitin ligase ac-
tivity [22,29,34,115]. It has been observed that this provoke a ro-
bust serum antibody response in cases of active tuberculosis. More-
over, a peptide that encompasses the C-terminal region of amino 
acids 123-131 has demonstrated significant therapeutic effects in a 
mouse model of sepsis induced by cecal ligation and puncture, tar-
geting macrophages and effectively penetrating the cell membrane. 
These peptide-based treatments exhibit anti-inflammatory and an-
tibacterial effects for sepsis management [115] (Figure 2A.1,2A.2).

Epitope analysis of PE/PPE Rv1705, part of the five type VII 
secretion systems (ESX-1 to ESX-5), revealed a dominant epitope 
located in its N-terminal domain. Epitopes associated with a pep-
tide TLR4 agonist RpfE-like adjuvant at the N-terminus elicit a ro-
bust helper and cytotoxic CD8+ T-cell immune response, resulting 
in elevated levels of IFN-γ [114-116]. This results in macrophage 
activation and the production of cytokines necessary for the dif-
ferentiation of naive CD4+ T-cells [37,47,48,67]. 

Metabolomics

Metabolomics is used to examine the alterations in the body’s 
metabolites across various conditions, which can be a significant 
method to determine variations in metabolites, identifying dis-
ease-related metabolic biomarkers, mechanisms behind drug ac-
tion/metabolism, drug toxicity, microbial drug resistance, and the 
role of carbohydrate metabolism during Mtb infection. This might 
serve as indicators of the host-pathogen interaction [115,116]. 
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Figure 2a.2: The increase in the multi-drug resistant strains, the COVID pandemics it is clear that from 2021 and nowadays there was 
an intense search in TB mechanism of immunopathogenesis and MDR resistance, that is why as depicted in the scheme, the studies and 
the milestones increased notoriously as well as in the use of the omics technologies, being transcriptomics, and genomics more frequent 
due to the information provided of the genes of the whole genome that are being up or down regulated in response to the TB, and to 
determine the MDR resistance, followed by epigenomics, and importantly proteomics in the effort to search for biomarkers that could be 
used as potential candidate vaccines. Metagenomics and metabolomics to continue characterizing for one side the microbioma and the 

metabolites that are being secreted in response to TB.

These peptide-based treatments exhibit anti-inflammatory and an-
tibacterial effects for sepsis management Metabolomics, alongside 
genomics, proteomics, and transcriptomics as part of systems biol-
ogy, helps clarify the functionality of the genome of the pathogen in 
the context of host-pathogen interactions [116,117]. This approach 
aims to provide a better understanding of the mechanisms of drug 
action, drug toxicity, and microbial drug resistance. Additionally, it 
highlights how metabolite biomarkers can act as prognostic indica-
tors for predicting treatment outcomes (Figure 2A, 2A.1).

The contributions of metabolomics to the characterization of 
tuberculosis have been significant, particularly in enhancing the 
understanding of Mtb regarding (1) metabolism, (2) growth and 
replication, (3) pathogenicity, and (4) drug resistance [116-119]. 
To accomplish these various tasks and objectives, liquid chroma-
tography tandem mass spectrometry (LC-MS/MS) in conjunction 
with comprehensive bioinformatics analysis has facilitated the 
identification of metabolites in the serum of patients with osteo-
articular TB [116,117], to uncover new metabolic biomarkers for 
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diagnosis [119]. It can also be possible to determine metabolites 
involved in several lipid metabolic signaling pathways, including 
choline metabolism, sphingolipid signaling, retrograde endocan-
nabinoid signaling, as well as sphingolipid and glycerophospho-
lipid metabolism [118]. To explore how metabolism is influenced 
during the interaction between host and pathogen in active TB, 
and DM [119], the multimodal metabolomics and lipid omics ap-
proach used to analyze plasma metabolic profiles revealed dis-
turbances in lipid metabolism through the C18 metabolomics and 
lipid omics assessment [119,120]. In comparison to TB alone, the 
comorbidity with DM demonstrated increased levels of bile acids 
and compounds associated with carbohydrate metabolism, along 
with decreased levels of glutamine, retinol, lysophosphatidylcho-
line, and phosphatidylcholine [120]. Additionally, arachidonic acid 
metabolism was identified as a potentially significant component 
in the pathophysiological relationship between TB and DM, and 
within a correlation network of the markedly altered molecules, 
chenodeoxycholic acid emerged as a key node. The fatty acid (22:4) 
was present in all major modules [119,120], while various amino 
acid (phenylalanine/histidine,citrulline/arginine,kynurenine/
tryptophan) ratios differentiated TB from the control group. While 
amino acid levels (i.e., serine, glycine) and choline were lower in 
TB-DM than in TB alone [118-120]. All together, these findings 
have contributed to the discovery of new metabolite biomarkers, 
and to the understanding of metabolic alterations in TB-DM [116-
120]. On the other hand, the combination of omics, metabolomics 
and lipid omics offer a comprehensive overview of the metabolic 
transformations linked to these infections, and autoimmune condi-
tions [118,119]. Moreover, and of relevance is that using metabo-
lomics and transcriptomic data from patients with PTB, and DM 
has suggested that the NOTCH1/JAK/STAT signaling pathway plays 
a crucial role [119,120]. The physiological levels of these metabo-
lites could serve both for fundamental understanding as well as for 
clinical use as biomarkers for PTB in patients with DM [119,120] 
(Figures 2A.1, 2A.2).

Artificial intelligence and infectious disease
Artificial intelligence (AI) has been around for over 60 years. 

Its importance has grown with the rise of omics technologies, 

generating vast amounts of data and resulting in many real-world 
applications, particularly in medical imaging [121]. In the last de-
cade, the development of artificial intelligence methodologies has 
contributed to accelerating the processing of large amounts of 
data and reducing the error rate in image analysis. In infectious 
disease research, artificial intelligence has been used for model-
ing by combining machine learning, computational statistics, and 
information retrieval with routinely collected infectious disease 
surveillance data and data science [121-126] (Figure 2B). A search 
in the PUBMED database currently retrieves 4,339 papers focused 
on the application and development of AI methods to accelerate 
research in this area. Infectious diseases, which the WHO cites as a 
major threat to individual and public health, are a key field where 
AI-driven tools offer significant potential [121-126]. This informa-
tion is used to answer key epidemiological questions, such as the 
rate of transmission and incidence, the distribution, frequency, 
magnitude, the predictions and control of factors linked to human 
health and disease, as well as the determining factors of diseases in 
defined human populations In this figure is depicted selected mile-
stones accomplished of the AI development and use in infectious 
disease, especially focusing in improving images fast analysis in TB 
(Figure 2B). 

Remarkably, AI is revolutionizing data analysis and the predic-
tion of pathological outcomes. AI models facilitate disease diagno-
sis, condition classification, and risk prediction [122,123]. Inte-
grated with systems and synthetic biology (omics technologies), 
AI accelerates anti-infective drug discovery, enhances the under-
standing of infection biology, and expedites diagnostic develop-
ment [124]. The application of artificial intelligence in infectious 
disease research involves developing systems capable of inter-
preting complex datasets [122-126]. These approaches facilitate 
analysis at multiple biological scales, ranging from single cells to 
entire populations. Furthermore, AI methods integrate large-scale 
quantitative and omics data, thereby expanding research capabili-
ties and driving advancements in biomedicine and biotechnology. 
AI has the potential to identify pathogens in different types of sam-
ples (such as fluids or solids) for accurate diagnosis [125]. This can 
even be more optimized through the combination of automation 
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with AI algorithms, thus increasing productivity. Since the pandem-
ic in 2019, in terms of imaging animal models, it has motivated rap-
id developments in AI and medical imaging techniques, with two 
main objectives: to improve patient care, but also to fill gaps that 
exist in clinical infectious disease research [127]. Furthermore, AI 
methodologies such as machine learning (ML) and Big Data Analyt-
ics (BDA) algorithms can be applied for analyzing diverse datasets. 
Thus, for example, ML can be applied and addressing in several key 
areas, such as outbreak prediction, pathogen identification, and 
drug discovery, while the combination of ML and BDA can aid in the 
prediction of for example the performance of antigens as vaccine 
candidates, the feasibility of subunit antigen vaccine, at the same 
that be helpful in the subunit vaccine design, discovery and char-
acterization [128]. ML and DL can be focused for a better manage-
ment of human infectious diseases and clinical research [126] in 
terms of laboratory diagnostic that includes, -Digital culture plate 

Figure 2b: The use of the artificial intelligence (AI) for diagnostic in TB through the three main methodologies, deep learning (DL), ma-
chine learning (ML) and Big data analytics (BDA) started step by step some year ago, firstly the objective was to accelerate the processing 
of the biopsies images to get a more precise and rapid diagnostic, and secondly, to be able to use algorithms in the form of BDA for predic-
tion and modelling mode of action of secondary metabolites, drugs or candidates vaccines as well the interaction a of the host-pathogen 

under different environmental or clinical conditions.

reading,-Malaria diagnosis,-Antimicrobial resistance profiling, 
-Clinical imaging analysis (e.g. pulmonary tuberculosis diagnosis) 
[129]-Clinical decision support tools (e.g., sepsis prediction, anti-
microbial prescribing), -and public health outbreak management 
(e.g. COVID-19) [129]. Besides, AI can address Clinical validation, 
such as, research with translational potential, and -drug discovery 
and microbiome-based interventions.

Artificial intelligence and Tuberculosis
From the 4339 paper related to the role of the AI in infectious 

disease, 1186 are related to AI and TB [126-130]. The application 
of artificial intelligence to Tuberculosis has been explored since 
the development of algorithms, with the performance starting 
around 2012. Since then, it has become one of the system biol-
ogy languages with impressive results. Artificial intelligence (AI) 

15

Omics and Artificial Intelligence Addressing Host Immune Response in TB

Citation: Gloria G Guerrero M., et al. “Omics and Artificial Intelligence Addressing Host Immune Response in TB". Acta Scientific Microbiology 9.1 (2026): 
02-24.



has become the most novel and powerful bioinformatics tool in 
the research of almost any field of science. The current potential 
of Artificial Intelligence (AI) in infectious disease resides in that it 
has transformed the landscape of prognostic, diagnostic, and TB 
treatment. The integration of AI tools, such as machine learning 
(ML) and natural language processing (NLP), trained with vast 
amounts of clinical data, including genomic, transcriptomic, and 
imaging data [126-128], can enhance our ability to identify at-risk 
populations, predict drug resistance, identify novel mutations, op-
timize treatment regimens, predict disease outcomes, and tailor 
therapeutic interventions [66,67,105,129-131]. It can enhance our 
ability to identify at-risk populations, predict drug resistance, iden-
tify novel mutations, optimize treatment regimens, predict disease 
outcomes, and tailor therapeutic interventions [132-134]. Indeed, 
AI tools, such as artificial neural networks (ANN)(neural networks, 
connectionist models to solve complex patterns of data without 
previous knowledge of the distribution of the data) (Figure 2B) 
fuzzy logic (to facilitate expression through natural language labels 
and bring us closer to that natural treatment of language when at-
tempting to qualify and quantify within the development of infor-
mation systems), genetic algorithms, DL and artificial intelligence 
simulation (AIS), have become a promising alternative that can aid 
clinicians and researchers to augment efficacy and specificity in 
the diagnostic test in different types of samples and in computer-
assisted diagnosis for chest imaging radiology [135,136] (Figures 
2B,and 3). Since current diagnostic tests, e.g., Tuberculin skin test 
(TST), interferon gamma release (IFN-γRes), biomarkers and the 
gold standard assay can only differentiate infected individuals from 
healthy ones but cannot discriminate between latent TB (LTBI), 
and active TB infection (ATB), it has been proposed that the ap-
plication of machine learning (ML) in diagnosis [137] could aid in 
a more effective differential diagnosis of healthy and LTB patients. 
Once optimized and validated, it can be amenable to large-scale 
screening everywhere [137]. AI machine learning can be combined 
with several other methodologies, such as NGS, PET-CT (Positron 
Emission Tomography (PET) scan and a Computed Tomography 
(CT) (a combined assay of detection of radiotracers –PET., and the 
image test scan-CT., to evaluate organ and tissue function and thus 
to detect clinic manifestations of disease much faster than other 

image methods. To track diseases, e.g., neurodegenerative, cancer 
and cardiac conditions. The X-pert or the Gene X-pert MTB/RIF as-
say, a PCR assay for the detection of rifampicin resistance world-
wide in patients with HIV-associated, smear-negative tuberculosis. 
The determination and identification of blood biomarkers, can aid 
and potentiate the TB diagnostic and treatment as well [138]. The 
line probe assay (LPAs), based both in PCR and electrophoresis in 
gel, and is an assay for the detection of MDR rifampicin and isonia-
zid (INZ) and for the detection of another species of mycobacteria 
from sputum or medium cultures [1,2] (Figures 2B, and 3).

AI can contribute to global health in two main aspects, one is in 
chest radiography, covering from simple computer-aided diagnosis 
systems to more advanced deep learning algorithms [139] (Figure 
3). The other is in the capacity of AI-based technologies to discrimi-
nate EPTB and Crohn’s disease (CD). This can be done through the 
use of multiple parameters, which results in increasing sensitivity 
and accuracy versus traditional models. Moreover, a test library of 
chest X-ray (CXR) images blindly re-read by two TB clinicians de-
veloped with different levels of experience and then processed by 
12 CAD software solutions [140]. A disadvantage of this software 
is that the majority of the CAD software showed significantly lower 
performance among participants with a past history of TB. Another 
weakness was that the radiography equipment used to capture the 
CXR image was also shown to affect performance for some CAD 
software. Despite this, it is indicated that TB program implement-
ers now have a wide selection of quality CAD software solutions to 
utilize in their CXR screening initiatives [140] (Figures 2B, and 3).

How to have a snapshot to decipher the dynamics, the profile 
of the innate and adaptive immune responses, under the external 
stimuli, pathogens, and their association with other diseases, with 
other physiologic states at specific tissue and mucosal compart-
ments. To these challenges, novel technologies such as multi-omics 
technologies have become a revolution that generates thousands 
of data to interpret them and to understand what is happening 
in health and disease [131,132]. Furthermore, multidimensional 
analyses generate such an amount of data that the lack of appro-
priate language to interpret can lead to misunderstanding of what 
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is happening at the interface of the host-pathogen interaction and 
in the dynamics of a population of cells in a specific tissue envi-
ronment (Figure 3). Therefore, a type of biological model language 
that has become very popular is the AI, which can be a valuable tool 
to evaluate what is happening in a particular experimental condi-
tion in a tissue-specific environment using language models. AI can 
learn complex patterns within sequences (amino acids in a protein, 
nucleotides in genes [131,132] and interactions, such as the Im-
munological pathways. Indeed, AI is an artificial neural network 
that can capture the interaction of amino acids in a protein, sig-
naling pathway, or gene expression patterns across long sequences 
[131,132]. Another example is single-cell gene expression data for-
mulated sequentially by creating a sequence in which genes appear 

in the order of their RNA expression levels in a cell. As the language 
model processes the input sequence, it internally computes an em-
bedding, a numerical representation for data analysis and visual-
ization, and fine-tuning the data relevant to the desired goal. The 
input allows a direct prediction approach, which is the simplest,the 
language model is given inputs and used as is to make predictions. 
The transfer of learning, in which pre-training on a larger dataset, 
provides the model with a fundamental understanding of the data, 
enabling more efficient learning of the new objective during fine-
tuning with novel data. A model that has already been trained (pre-
trained) on the data and is offered further trained (fine-tuned) on 
new data [119-124,131-133] (Figure 3).
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Figure 3: The interaction host-pathogen in the context of the immune pathogenesis of the TB disease can be addressed using omics 
technologies in conjunction with artificial intelligence. As outlined in figure 1 the milestones of the omics technologies have required 
the development of a biological language to interpret in active or latent TB infection, and the subclinical stages, the expression of genes, 
proteins, and metabolites in tissues, organs, and fluids can be determined using omics technologies. This molecular information that 
can be the source and a input for IA algorithms, to predict, to evaluate basic and applied investigations for example, on the different 
types of mycobacterial drug resistance [(MDR), single-drug resistance (SDR), and extensive drug resistance (XDR)]. AI through different 
methodologies, deep learning, machine learning, Big data analytics, and neural networks to approach mechanisms of resistance, the 
genetic variability in the host response to TB infections, the bio signature at the level of the epigenome, proteome, transcriptome, 

metabolome. The signature that allow biomarkers determinations for diagnostic and/or treatment.



DL in enhancing TB diagnosis through the classification and de-
tection of TB bacilli in microscopic images. The systematic review 
outlines various DL techniques used to assist in automating spu-
tum smear microscopy, which traditionally relies on manual count-
ing and is prone to human error [129] explored multiple studies, 
identifying DL methods such as convolutional neural networks 
(CNNs) and their ability to significantly improve the accuracy and 
efficiency of TB diagnosis. These techniques, applied to Ziehl–
Nielsen-stained images, offer a promising solution to address the 
limitations of traditional microscopy, making TB diagnostics more 
accessible and reliable, especially in resource-limited settings. 
Furthermore, prediction model for drug resistance has been de-
veloped [113,129,133,137,138] developed models for predicting 
resistance in the genes coding for target proteins affected by first-
line TB drugs. These models use various sequence and structural 
features of single nucleotide variations (SNVs) to capture the im-
pact of mutations. The study focuses on mutations in key genes 
such as rpoB, inhA, katG, pncA, gyrA, and gyrB that are associated 
with resistance to drugs like rifampicin, isoniazid, pyrazinamide, 
and fluoroquinolones. The models were developed using several 
ML algorithms, including naïve Bayes, k-nearest neighbor, support 
vector machine, and artificial neural network, achieving an average 
accuracy of 85% across all examined genes [134-141] (Figure 3). 
In another study it has been emphasized the importance of accu-
rate and rapid diagnostics to manage MDR-TB and XDR-TB strains 
[133]. It is proposed that a combination of phenotypic and molec-
ular DST methods to tackle challenges such as resistance to new 
drugs, hetero resistance, and low-level resistance mutations. For 
this aim, three DL-based prediction models (PMs) using longitudi-
nal CT images were developed to TB treatment outcome [134-139]. 

On the other hand, the use of natural language processing NLP, 
and large language models (LLMs) in the diagnosis and prediction 
of infectious disease highlights how these technologies can extract 
valuable insights from large volumes of unstructured clinical data, 
such as electronic health records (EHRs). Thus, to support early di-
agnosis and personalized treatment strategies discuss how LLMs 
can be trained on vast amounts of EHR data to predict disease pro-
gression and identify high-risk patients. This approach can be par-
ticularly useful in TB-endemic regions, where resources for exten-

sive testing may be limited [113,131,133,136,142,143] (Figure 3).

Discussion

The host-pathogen interaction in particular referring to the 
interaction of the M. tuberculosis at the interface of the epithelial 
and mucosal surfaces offer the possibility to study and to dissect 
the molecular mechanism of pathogenesis that can be approached 
at different scales, molecular and cellular (Figure 1A-B). The host 
immune response at this first line of defense plays a key role that 
involves to the antigen presenting cells of the innate immune re-
sponse, macrophages, dendritic cells, neutrophils, NK cells [27,28]. 
One activated this response that also involves to the complement 
system, there is a connection with the adaptive immunity, in which 
the B and T cells iNKT, and the gamma delta lymphocytes respond 
to the infection producing products for the differentiation and 
homing of subsets of lymphocytes to distal mucosal sites. One of 
the question pinpointed by several authors, is how MTB inducing 
a state of molecular off/Switch to overcome the host immune re-
sponse and survive? [27,30,48]. At which level is the regulation, 
epigenetic, transcriptomic, proteomic? From the milestones de-
picted in Figure 2A, it is clear that the use of the different omics has 
been step by step along and in conjunction with the development 
and advancements of devices and equipment to have better reso-
lution, precision and mode of interpretation of the data. In other 
words, approaching the epigenetics of the interaction host-patho-
gen did not limit to the use of the metabolomics as a diagnostic 
test or the transcriptomics. The limitation that reside in one of the 
other omics technology might be the compartment analyzed, the 
methods used to obtain the sample, the sensibility of the equip-
ment, the technique and the methodology. By the scientific part de-
pends enormously how close we can study and analyze the interac-
tion and the living of Mtb in the host, specifically with the innate 
and adaptive immune cells [30,35,36,38]. All this before can be 
traduced in biomarkers of the spectrum of the Mtb disease (active, 
clinic sub stages, latent). Biomarkers translated as metabolites, as 
proteins, glycoproteins, lipids, transcription factors, downstream 
key genes of the pro-inflammatory response, or anti-inflammatory 
response, methylation patterns, autophagy, ubiquitination, and 
many more molecular components that has been analyzed since 
the first approaches using omics technologies (Figure 2A). More-
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over, the cross talk with the microbiome at the lung can also give 
a cue in the immunomodulation of the host response against TB. 
In addition, the genetic variability plays a key role in the fate of 
the infection and in the host susceptibility to the TB infection. 
Overall the milestones in omics technologies focused in TB shed 
light in the efforts to understand and how is being approached the 
success of MTB for long term survival and evasion of the host im-
mune response [16-18] (Figure 2A,2A.1,2A.2). Finally, how the de-
velopment of algorithms can aid to the omics analysis, can aid in 
different ways, not only in speeding the analysis of the images but 
in the speeding the processing of data, evaluation of clinic test in 
vivo and in vitro, the animal models, favoring thus, importantly, the 
establishments of models of prediction either of the host-patho-
gen interaction as well as behaviors of drugs/candidate vaccine, 
the adjuvants, or enhancers of the immune response (Figure 2B) 
[16-18,48]. Taking in account what it has been pinpointed above, 
it is noteworthy to mention that current present in diagnostic and 
treatments that New guidelines concerning TB diagnostics and a 
corresponding operational handbook included recommendations 
for targeted next-generation sequencing. These guidelines recom-
mend the use of the uridine lateral flow lipidoarabinomannan (LF-
LAM) assay [1] for adults and adolescents with HIV, conducting 
molecular tests on respiratory specimens and stool samples in chil-
dren, and simultaneously utilizing molecular tests on respiratory 
samples, stool, and the LF-LAM assay on urine from children living 
with HIV. Many studies with pipelines for TB treatment encompass 
translation studies from in vitro to in vivo performance in animal 
models such as zebrafish embryos. In the treatment guidelines 
for individuals with MDR/RR-TB have been incorporated a new 
6-month treatment regimen that includes bed aquiline, delama-
nid, and linezolid, along with either levofloxacin or clofazimine, or 
a combination of both. Six new tuberculosis vaccines are in phase 
III clinical trials as of August 2024, demonstrating safety and ef-
ficacy [1-3]. In terms of the development of candidate’s vaccines 
and delivery systems, small-molecule chemical libraries can ef-
fectively identify chemo types active against tuberculosis through 
phenotypic whole-cell-based assays [46-48,60,90,161,80,114]. The 
application of mycobacteriophages when effectively formulated in 
Nano-vehicles targets resistant strains, including MDR, XDR, or 
slow-growing mycobacteria [67,80,95,115]. Additionally, innova-
tions in micrometric and Nano metric drug delivery methods, such 
as colloidal (both vesicular and particulate) carriers. Despite that 
for a global TB drug development pipeline, the DST [4-6] and the 

incorporated urine drug susceptibility test (UDST), identify active 
TB with precision, and is accessible in low-income nations, these 
studies can be complemented with different omics, among them, 
metabolomics, proteomics, for medicine of precision [1,2] (Figure 
3).

Conclusions
The omics technologies, translating structural genomics in-

formation into molecular signatures (transcriptional, proteomic, 
epigenetic, metabolomics) as profiling patients phenotypes and 
genotypes (immune genetic disorders associated to mutations (ex-
pressed as single nucleotide polymorphism) leading to a medicine 
of precision to a personalized medicine, with implication in novel 
immunotherapies. In the pursuit of accelerating the development 
of new targets for diagnostic and preventive treatments, it is well 
recognized that bioinformatics tools can play a significant role. 
This has been demonstrated in recent years through the applica-
tion of AI to streamline and expedite data analysis and processing. 
Artificial intelligence started sixty years ago and it has become a 
smart tool that can speed up the analysis of big data, process data 
thorough machine learning and deep learning, in cases in which 
huge amount of such in epidemics, pandemics be necessary. It ad-
dition it can also be predictive of novel drugs, biomolecules, predict 
even action mechanism and even host response to external stimuli. 
The multiple diverse task of AI in conjunction with the omics tech-
nologies is to accelerate the input of processing, evaluation, model-
ing and prediction of the outcomes of the host pathogen interaction 
in Tuberculosis. The current present is that WHO is being try to 
harness from AI tools to obtain the maximum benefit in keep under 
control the outbreaks of M. tuberculosis infection in different geo-
graphical TB endemic regions. 
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