
ACTA SCIENTIFIC MICROBIOLOGY (ISSN: 2581-3226)

     Volume 2 Issue 9 September 2019

Explaining Monod in Terms of Escherichia coli Metabolism

Ega Danu Chang1 and Maurice HT Ling2,3,4*
1School of Applied Sciences, Temasek Polytechnic, Singapore
2Colossus Technologies LLP, Singapore
3HOHY PTE LTD, Singapore
4AdvanceSyn Private Limited, Singapore

*Corresponding Author: Maurice HT Ling, Colossus Technologies LLP, HOHY PTE LTD, AdvanceSyn Private Limited, Singapore.

Research Article

Received: July 29, 2019; Published: August 12, 2019

Monod Equation [1] estimates the relationship between limi-
ting carbon source and bacterial growth [2] and is structurally 
identical to Michaelis-Menten Equation, which models the enzy-
matic production of product(s) from substrate(s) [3]. Hence, Mo-
nod Equation can be seen as an adaptation of Michaelis-Menten 
Equation for bacterial growth where the substrate and product are 
carbon source and cellular growth respectively. Recently, Monod 
Equation has used to model various biological processes, including 
growth rate [4], product formation kinetics [5], and substrate usa-
ge kinetics [6]. 

The main advantage of using Monod Equation for modelling 
is its simplicity [7]. Modelling has been shown to be invaluable in 
metabolic engineering [8], systems biology [9], and synthetic bio-
logy [10]. However, Monod Equation, being an empirical formula 
[11], appears to be inadequate to explain the metabolic processes 
leading to growth rate. As an empirical relationship, Monod Equa-
tion does not render any room for engineering towards industrial 
objectives; such as increased growth rate or substrate yield rate. 
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Introduction 

Monod Equation is a simple empirical equation relating limiting substrate to cell growth rate. Despite being used in many studies, 
there is a need to elucidate growth rate in terms of metabolism, which is then used to inform metabolic engineering efforts. Here, we 
attempt to explain Monod Equation in terms of simulated metabolism, in the form of metabolic flux, from an Escherichia coli MG1655 
flux balance analysis (FBA) model to yield a growth rate objective function. Flux values represent change of molecule concentrations 
over time, making biomass objective function a rate equation. This poses difficulty in representing biomass objective function as a 
predictive model of metabolic fluxes, which is essentially an analytical equation of fluxes. Our results show a strong correlation (r = 
0.972, p-value = 1.16 x 10-14) between Monod’s predicted growth rate and biomass objective value from FBA model. Using this rela-
tionship, Monod’s predicted growth rate can be predicted by 14 fluxes (r = 1, p-value < 1 x 10-16, SSE = 2.3 x 10-7, MSE = 1.8 x 10-9). 
Therefore, this study explains the growth rate of E. coli MG1655 in terms of its metabolic flux and presents a methodology for unifying 
Monod Equation with simulated or experimental metabolism.

There are recent studies in predicting growth conditions [12] 
or growth rates in different media [13] from metabolism. However, 
there has been few attempts to interpret the growth rate in Mo-
nod Equation in terms of metabolic rates of various biochemical 
reactions. Several recent studies have attempted to expand Monod 
Equation from single substrate to multi-substrate to elucidate me-
tabolism [14-16]. Flux-based models are commonly used in me-
tabolic modeling [17,18]. Although flux models usually include a 
biomass objective function [19], which corresponds to growth rate; 
flux values represent change of molecule concentrations over time, 
making biomass objective function a rate equation and this poses 
difficulty in representing biomass objective function as a predicti-
ve model of metabolic fluxes, which is the presentation of Monod’s 
Equation and is essentially an analytical equation of fluxes. In this 
study, we attempt to explain Monod Equation in terms of simulated 
metabolism, in the form of metabolic flux, from an Escherichia coli 
flux balance analysis [20] model to yield a growth rate objective 
function. This study also presents a methodology for unifying Mo-
nod Equation with simulated or experimental metabolism.
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Empirical Growth Rate Prediction: The Monod Equation for E. 
coli growth rate (μ) in divisions per hour in various concentrations 
of glucose (10-4 M) is given as [2]:                                         Hence, 
predicted growth rate can be estimated for various concentrations 
of glucose.

Methods

Simulated metabolism: Simulated metabolism data was obtained 
by flux balance analysis (FBA) using Cameo [21] via AdvanceSyn 
Toolkit (https://github.com/mauriceling/advancesyntoolkit) on 
iAF1260 model [22] from the BiGG database [23], which was used 
in a previous study [12]. iAF1260 model is a genome scale model 
(GSM) based on E. coli MG1655 [22]. Of the 22 medium compo-
nents defined, 19 were set to 999,999 mmol per gram dry weight 
per hour (mmol/gDW/h); representing non-rate limiting quanti-
ties. These 19 components are (a) calcium (EX_ca2_e), (b) chloride 
(EX_cl_e), (c) carbon dioxide (EX_co2_e), (e) cobalt (EX_cobalt2_e), 
(f) copper (EX_cu2_e), (g) ferrous (EX_fe2_e), (h) ferric (EX_fe3_e), 
(i) water (EX_h2o_e), (j) proton (EX_h_e), (k) potassium (EX_k_e), 
(l) magnesium (EX_mg2_e), (m) manganese (EX_mn2_e), (o) mo-
lybdate (EX_mobd_e), (p) sodium (EX_na1_e), (q) ammonium 
(EX_nh4_e), (r) phosphate (EX_pi_e), (s) sulfate (EX_so4_e), (t) 
tungstate (EX_tungs_e), and (u) zinc (EX_zn2_e). Cob(I)alamin 
(EX_cbl1_e) and oxygen (EX_o2_e) were set to 0.01 mmol/gDW/h 
and 18.5 mmol/gDW/h respectively. Simulated metabolic data and 
its corresponding predicted growth rate, as estimated by the bio-
mass objective function [19], were obtained by varying D-glucose 
(EX_glc__D_e) concentration which was originally set to 8.0 mmol/
gDW/h.

Determining Growth Rate Objective Function: Growth rate ob-
jective function was determined using stepwise regression using 
Akaike information criterion [24] from MASS [25] on the follow-
ing model,                                where μ is the growth rate predicted 
by Monod Equation, βiMi are the coefficient and flux (in mmol/
gDW/h) of i-th molecule obtained from FBA respectively, and β0 is 
the constant. The flux data from simulation of iAF1260 model was 
cleaned – all fluxes smaller than 1 nmol/gDW/h were considered 
zero and variance of fluxes of zero across various glucose uptake 
rates were removed as they represent constant metabolite concen-
trations within the cell.

From the Monod Equation given by Liu [2], the growth rate pla-
teau at a maximum of 1.35 divisions per hour. Monk et al. [26] ex-

Estimation of glucose uptake rate required for maximum 
growth rate

Results and Discussion

amined the growth rate and the glucose uptake rate of seven strains 
of E. coli, including MG1655 which iAF1260 model [22] was based. 
Regression analysis (Figure 1) shows that division rate per hour 
= 0.0591 (glucose uptake rate in mmol/gDW/h) + 0.2465; with 
significant coefficient of determination (R2) of 0.6877 (F = 11.01, 
p-value = 0.021). The gradient of 0.0591 is significant (t = 3.32, p-
value = 0.02) but the intercept of 0.2465 is not significant (t = 1.44, 
p-value = 0.21). Using the regression equation, 1.35 divisions per 
hour will require a glucose uptake rate of 18.67 mmol/gDW/h.

Figure 1: Correlation between growth rate and glucose  
uptake rate in seven strains of E. coli. Data point for 

 E. coli MG1655 is labeled in red.

iAF1260 FBA model is a genome scale model based on E. coli 
MG1655 [22] and its corresponding predicted growth rate in vary-
ing D-glucose concentrations can be estimated by the biomass 
objective function [19]. Our results show a strong correlation (r = 
0.972, p-value = 1.16 x 10-14) between Monod’s predicted growth 
rate and biomass objective value from FBA model (Figure 2). This 
suggests a strong possibility to estimate growth rate, in terms of 
number of cell divisions per hour, from metabolic fluxes, in terms of 
millimoles per gram dry weight per hour; by using the regression 
model between growth rate and biomass objective value as proxy.

Strong correlation between biomass objective and growth 
rate

Cameo [21] provided two means to estimate objective value and 
fluxes; namely, flux balance analysis (FBA) and parsimonious flux 
balance analysis (pFBA). The objective values from FBA and pFBA 
in iAF1260 model [22], analyzed using 1 to 18 mmol/gDW/h of 
glucose uptake at the interval of 1 mmol/gDW/h (n = 18), shows 
perfect correlation (F = 3.17 x 108, p-value = 8.29 x 10-60, Figure 3). 

No Differences between flux balance analysis and parsimoni-
ous flux balance analysis
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The biomass objective function (BiGG ID BIOMASS_Ec_iAF1260_
core_59p81M) in iAF1260 model [19] is defined as a reaction of 63 
reactants and 4 products where the objective value, representing 

Determination of growth rate by flux

predicted growth rate, is represented as a flux value. Flux values 
represent the increasing or decreasing concentrations of molecules 
over time; hence, the biomass objective function is essentially a 
rate equation. This poses difficulty in representing biomass objec-
tive function as a predictive model of metabolic fluxes, which is es-
sentially an analytical equation of fluxes.

130 glucose uptake rates between 0.4 mmol glucose/gDW/h 
and 18.8 mmol glucose/gDW/h were used to estimate metabolic 
fluxes, resulting in 309,660 (130 glucose uptake rates x 2,382 
fluxes) data points. From 2,382 metabolic fluxes in iAF1260 model 
[22], 81.4% (n = 1,940) fluxes were constant and removed, result-
ing in 442 metabolic fluxes remaining. Of the 442 fluxes, the co-
efficients of 424 fluxes were not defined due to multicollinearity, 
resulting in 18 fluxes remaining. Of these 18 fluxes, 16 (Figure 4) 
were found to be significant (t-statistic > 7 x 106, p-value < 2 x 10-

16) by stepwise regression using Akaike information criterion [24] 
from MASS [25]. 

Figure 2: Relationship between biomass objective value and 
growth rate. Panel A shows the overlay between FBA biomass 

objective value at various glucose uptake rate and Monod’s growth 
rate at various glucose concentrations. Panel B shows the correla-
tion between biomass objective value from genome scale model 

(GSM) and growth rate from Monod’s Equation.

(a)

(b)

The regression slope of almost one also suggests that the objective 
values from FBA and pFBA are similar. A comparison between all 
2,382 fluxes from FBA and pFBA in three glucose uptake rates (1, 
9, and 18 mmol/gDW/h to represent low, medium and high glu-
cose uptake rates) were analyzed and the correlations between 
the fluxes from both methods are close to perfect correlation (r > 
0.999, F > 3.84 x 106, p-value < 1 x 10-100). The regression slopes of 
fluxes are above 0.9997 and the y-intercepts not significant from 
zero (p-value > 0.6). These also suggest no differences between 
FBA and pFBA.

Figure 3: Correlation between objective values 
 from FBA and pFBA.

Figure 4: Correlation as coefficient of determination (r2)  
between significant fluxes
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The regression model between growth rate (divisions per hour) 
and flux (mmol/gDW/h) is 
Growth rate = 0.15390 – 
0.00067 (ACKr flux) – 
0.00067 (ADK1 flux) + 
0.00985 (ATPS4rpp flux) + 
0.01773 (CYTBO3_4pp flux) + 
0.01576 (H2Otex flux) + 
0.00985 (H2Otpp flux) + 
0.00788 (Htex flux) + 
1.12 x 10-7 (NADTRHD flux) – 
0.00067 (NDPK1 flux) + 
0.00017 (NDPK2 flux) – 
0.01970 (PGK flux) – 
0.02691 (PGM flux) + 
0.00067 (PPM flux) – 
0.02691 (SUCDi flux) 

Where ACKr is acetate kinase, ADK1 is adenylate kinase, ATP-
S4rpp is periplasmic ATP synthase, CYTBO3_4pp is periplasmic 
cytochrome oxidase bo3 (ubiquinol-8:4 protons), H2O tex is ex-
tracellular to periplasm water transport via diffusion, H2Otpp is 
periplasmic water transport via diffusion, Htex is extracellular 
to periplasm proton transport via diffusion, NADTRHD is NAD 
transhydrogenase, NDPK1 is ATP:GDP nucleoside-diphosphate 
kinase, NDPK2 is ATP:UDP nucleoside-diphosphate kinase, PGK is 
phosphoglycerate kinase, PGM is phosphoglycerate mutase, PPM 
is phosphopentomutase, and SUCDi is irreversible succinate de-
hydrogenase. Regression analysis suggest that Monod’s predicted 
growth rate can be reliably predicted by these 14 fluxes (r = 1, p-
value < 1 x 10-16) with negligible error (SSE = 2.3 x 10-7, MSE = 1.8 
x 10-9).

Of the 14 fluxes, 3 fluxes (H2Otex, H2Otpp, and Htex) are dif-
fusion transport while the remining 11 fluxes (ACKr, ADK1, ATP-
S4rpp, CYTBO3_4pp, NADTRHD, NDPK1, NDPK2, PGK, PGM, PPM, 
and SUCDi) are enzymes. Nine of the 11 enzymes; namely, acetate 
kinase (ACKr) [27]; adenylate kinase (ADK1) [28]; ATP synthesis 
[29], potentially affected by periplasmic ATP synthase (ATPS4rpp); 
cytochrome oxidase bo3 [30], potentially periplasmic cytochrome 
oxidase bo3 (CYTBO3_4pp); nucleoside-diphosphate kinases [31], 
potentially NDPK1 and NDPK2; phosphoglycerate kinase (PGK) 
[32]; phosphoglycerate mutase (PGM) [33]; phosphopentomutase 
(PPM) [34]; have been shown to be affect growth rates of various 
bacterial strains. NAD transhydrogenase (NADTRHD) has been 
suggested to affect the growth rate of E. coli by affect the fluxes 
in pentose phosphate pathway [35]. Succinate dehydrogenase has 

been shown to affect anaerobic growth of E. coli [36] but knocking 
out irreversible succinate dehydrogenase (SUCDi) has minimal ef-
fect on E. coli aerobic growth rate but results in massive changes to 
other metabolites and fluxes [37]. This suggests that the effect of 
SUCDi on growth rate may be conditional or by modulating other 
fluxes. 

Comparing the regression model and biomass objective func-
tion [19] in iAF1260 model [22], the most significant observation 
is a complete disjoint where none of the fluxes in the regression 
model are found in the biomass objective function. The biomass 
objective function consists of 67 metabolites while our regres-
sion model consists of 14 transporters and enzymes. Hence, there 
are two advantages of our regression model. Firstly, our regres-
sion model consists of substantially fewer independent variables 
compared to the biomass objective function. Secondly, metabolite 
concentrations are at the metabolic level, which cannot be eas-
ily manipulated experimentally; unlike enzyme concentrations, 
which are easier to manipulate using gene over-expression or un-
der-expression. In conclusion, this study explains the growth rate 
of E. coli MG1655 using 2 transport fluxes and 11 enzyme fluxes, 
as well as presenting a methodology for unifying Monod Equation 
with simulated or experimental metabolism.
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