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Abstract

Pythonand R dominate contemporary scientific dataanalysis due to their mature ecosystems and extensive methodological support,

yet performance limitations often arise in computation-intensive scenarios, leading to fragmented multi-language workflows. SiPy is

a lightweight statistical interface written in Python that addresses this challenge by explicitly coordinating multiple languages while

preserving clear execution boundaries. Building on earlier versions that integrated R as a statistical backend, this article reports

SiPy 0.8.0 (released on 09 January 2026), which extends the framework to incorporate Julia as a high-performance computational

engine and formalises script-level execution across Python, R, and Julia using a uniform subprocess-based model. In this three-

legged architecture, Python functions both as the primary orchestration layer and as a scriptable computational backend, R provides

rigorously validated statistical methods, and Julia supports performance-critical numerical computation and simulation. The system

architecture underlying this design is described, including environment isolation, script-based execution, and conservative data

exchange strategies that prioritise reproducibility and portability.
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Introduction

Python and R have become the dominant languages in
contemporary scientific workflows [1] due to their mature
ecosystems, extensive libraries, and strong community support.
Python excels as a general-purpose scientific programming
language, offering broad interoperability, flexible orchestration,
and a rich ecosystem for data manipulation, visualization, and
automation [2]. R, in contrast, has established itself as the de facto

standard for statistical analysis, inference, and methodological

development [3], with a depth of rigor and breadth of statistical
techniques that remain unmatched in many domains. Together,
Python and R underpin alarge proportion of modern computational
research and reproducible data analysis pipelines [1]. SiPy [4] is
a lightweight statistical interface written in Python, and has been
demonstrated as a potential platform for incorporating R methods

while reducing the learning curve needed to learn R.

Despite these strengths, scientific workflows frequently

encounter performance limitations [5] when computational
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demands increase, particularly in scenarios involving large-scale
simulations, complex numerical solvers, or algorithmically intensive
models. In such cases, researchers often face the so-called two-
language problem [6]; where high-level languages such as Python or
R are used for prototyping and analysis, while performance-critical
components mustbe re-implemented in lower-level languages such
as C, C++, or Fortran [7,8]. This separation introduces additional
complexity, increases development and maintenance costs, and

raises barriers to reproducibility and extensibility.

Julia was explicitly designed to address this challenge by
reconciling high-level expressiveness with low-level performance,
thereby collapsing the traditional divide between prototyping and
execution. As articulated by Bezanson,, et al. [6], Julia's language
design enables developers to write code that is both readable and
performant, allowing algorithmic descriptions to remain close to
their mathematical formulations without sacrificing computational
efficiency. This design philosophy directly targets the two-language
problem and offers an alternative paradigm for performance-
critical scientific computing. Empirical evidence supports Julia’'s
effectiveness in domains where numerical performance and
composability are central. High-performance scientific areas; most
notably differential equation solving, simulation frameworks,
and large-scale numerical modelling; have reported substantial
success with Julia, demonstrating both competitive or superior
performance relative to established tools and a high degree of
composability across scientific abstractions [9,10]. These reports
further highlight Julia’s suitability as a computational engine
within broader scientific workflows, rather than as a wholesale
replacement for existing languages [11]. Importantly, Julia's
strengths do not diminish the continued relevance of Python and
R; instead, they suggest a complementary relationship in which
each language occupies a distinct and well-defined role [12,13].
Python remains well suited for orchestration, workflow control,
and integration across heterogeneous tools. R continues to serve as
the authoritative environment for statistical modelling, inference,
and methodological validation. Julia, meanwhile, provides a natural
home for performance-critical numerical computation, algorithm

development, and simulation-heavy workloads [13].

Motivated by this perspective, this article reports SiPy 0.8.0
(released on 09 January 2026) as adopting a three-legged
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architecture that leverages the respective strengths of Python, R,
and Julia. In SiPy, Python functions as the primary orchestration
layer, coordinating data flow, execution, and user interaction. R
is employed for statistical analysis and inference, drawing on its
extensive and rigorously validated ecosystem. Julia is incorporated
as a high-performance computational backend, enabling efficient
execution of numerically intensive tasks while maintaining clarity
and expressiveness in algorithmic implementation. By explicitly
delineating the roles of each language and integrating them within
a coherent framework, SiPy seeks to provide a practical and

extensible approach to multi-language scientific computing.

Incorporating Julia into Python/R-based SiPy Version 0.7.0

R has been an important statistical engine in SiPy since version
0.6.0 [4] where clear execution boundaries between languages
have been preserved, which is also the basis of improvement from
SiPy since version 0.6.0 [4] to SiPy since version 0.7.0 [14]. Rather
than embedding interpreters or relying on in-process foreign
function interfaces, SiPy adopts a subprocess-based execution
model [4]; in which Python serves as the primary orchestration
layer, coordinating the invocation of R as external computational
backends. This architectural choice prioritises reproducibility,
portability, and transparency over tight coupling, and reflects the
intended role of SiPy as a coordination and integration layer rather
than a monolithic runtime. Incorporation of Julia into SiPy will use
the same mode. The main reason for choosing this subprocess-
based method over language bridge; such as rpy2 (Python
package to call R), and PyJulia (Python package to call Julia) is
that subprocess package is native in Python Standard Library and
does not require additional installations for subprocess-based
method to work. This reduces future maintenance load. Moreover,
using language bridge is likely to result in a blurring of boundaries

between SiPy, R, and Julia.

At the core of SiPy’s architecture is a unidirectional execution
flow initiated from Python (Figure 1). Analytical tasks are
expressed in Python and, where appropriate, translated into
language-specific scripts that are executed in isolated R or Julia
subprocesses. Python is responsible for preparing inputs, invoking
the appropriate runtime, monitoring execution, and collecting

outputs. This execution model provides several advantages. First,
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it avoids the complexity and fragility associated with embedding
language runtimes or maintaining long-lived cross-language
bindings. Second, it ensures that each language executes within
its native runtime environment, thereby preserving expected
semantics and reducing unexpected side effects. Third, subprocess-
based execution makes failure modes explicit and recoverable,
as errors and warnings are captured directly from standard
output and error streams. The same execution strategy is applied
consistently across R and Julia backends, allowing both languages
to be treated as interchangeable computational engines from the

perspective of the Python orchestration layer.

Figure 1: Interoperability Between Python, R, and Julia in SiPy.

To support reproducibility and ease of deployment, SiPy
emphasises explicit control over execution environments. Each
backend language is invoked using a known executable path and
a controlled runtime configuration, avoiding reliance on user-level
global installations wherever possible. For R, SiPy supports the
use of a portable R distribution bundled alongside the framework,
enabling analyses to be executed in a self-contained environment
with a known set of packages. For Julia, SiPy adopts a similar
approach by invoking a locally bundled Julia binary in conjunction
with an isolated project environment and package depot. In both
cases, environment variables and runtime flags are used to prevent
leakage into user-specific configuration files or global package
directories. This approach allows SiPy workflows to be distributed,
reproduced, and executed across systems with minimal external
dependencies, while remaining agnostic to operating system-

specific package managers.

SiPy communicates with R and Julia through dynamically
generated scripts rather than direct function calls. These scripts

encode the analytical intent expressed in Python and are executed
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as standalone units within their respective runtimes. Inputs are
passed through explicitly defined files or arguments, and outputs
are written to structured data formats such as plain text, CSV,
or JSON. By enforcing explicit language boundaries, SiPy avoids
implicit state sharing across languages and reduces the cognitive
load associated with debugging multi-language workflows.
This design choice also aligns with established best practices in
reproducible research, where computational steps are expected to

be inspectable, re-executable, and auditable.

Data exchange between Python, R, and Julia in SiPy is
intentionally conservative. Rather than attempting to share in-
memory objects or complex language-specific data structures,
SiPy relies on serialised representations that are widely supported
across languages. Tabular data, model outputs, and summary
statistics are exchanged using standard formats that prioritise
transparency and long-term stability. While this approach incurs
modest practical overhead relative to in-process communication
(see Appendix A, B), it offers clear benefits in terms of robustness,
reproducibility, and ease of inspection. Moreover, because the most
computationally intensive operations are delegated to the backend
languages, the overhead associated with data serialisation does not

typically dominate overall execution time.

The architectural decisions underlying SiPy reflect a deliberate
trade-off between tight integration and long-term sustainability.
By avoiding deep interlanguage coupling (such as the use of
language bridge), SiPy reduces maintenance burden and minimises
sensitivity to changes in any individual language’s internal APIs.
At the same time, by assigning well-defined roles to Python, R,
and Julia, the framework leverages the strengths of each language
without forcing convergence onto a single programming model.
In this sense, SiPy’s architecture is not intended to abstract away
language differences entirely, but rather to make them explicit
and manageable. This design supports both methodological
development and pedagogical clarity, allowing users to reason
about where and why a particular language is employed within a

given workflow.

Testing Julia and R in SiPy

Two tests were performed to demonstrate that Julia is callable
from SiPy. The first test is on linear regression. Given that the
dependent variable, yN, is {1.2, 2.3, 3.1, 4.8, 5.6, 6.2, 7.9, 8.4, 9.7,
10.5}; and the independent variables, x1 and x2, to be {2.0, 3.0, 5.0,
7.0, 11.0, 13.0, 17.0, 19.0, 23.0, 29.0} and {1.0, 4.0, 9.0, 16.0, 25.0,
36.0, 49.0, 64.0, 81.0, 100.0} respectively; both R and Julia were

Citation: Maurice HT Ling. “SiPy 0.8.0 on the Three Legs of Python, R, and Julia". Acta Scientific Computer Sciences 8.1 (2026): 01-09.



SiPy 0.8.0 on the Three Legs of Python, R, and Julia

asked to run a linear regression with the model, yN = b1(x1) +
b2(x2) + b0. The test shows that both R and Julia gave the same
results (Figure 2) as yN = 0.608(x1) - 0.070(x2) + 0.828 with
R-square of 0.968; thereby, demonstrating that Julia is callable
from SiPy. Similarly, R-based and Julia-based linear regression can

also be called if data is in a file (Figure 3).

The second test is to execute external R and Julia scripts from
within SiPy (Figure 4). In this test, a data file in the form of comma-
delimited file was used to perform linear regression using both R
and Julia. Differing from the first test where the codes for linear
regression were implemented within SiPy, this test assumes that
the R or Julia operations were provided as a script - r_Im.R and
julia_lm.jl respectively; where the scripts will be called from within
SiPy, and parameters / arguments are routed from SiPy into the
scripts. The test shows that the script execution is successful. This
suggests that users can link up R and Julia scripts for execution

within SiPy.

Figure 2: Running Linear Regression on R and Julia Using

Identical Data Values.
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Figure 3: Running Linear Regression on R and Julia Using
Identical Data File.

Figure 4: Running External R and Julia Scripts on Identical Data
File.
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Script-Level Extensibility and User-Defined Backends

A central design principle of SiPy is that extensibility is achieved
at the level of executable scripts rather than through exhaustive
API wrapping or language-level bindings. SiPy does not attempt to
re-expose the full functionality of R or Julia within Python, nor does
it seek to mirror the evolving APIs of these languages. Instead, SiPy
provides a controlled execution framework in which user-authored
Python, R, or Julia scripts are treated as first-class computational
backends. This approach explicitly shifts the extension mechanism
from the SiPy source code to the user’s analytical scripts, allowing
the framework to remain lightweight while retaining access to the

full expressive power of each backend language.

Under this model; any valid Python (Figure 5), R, or Julia script
that can be executed from the command line can also be executed
from within SiPy. Users are free to write scripts that implement
bespoke statistical models, numerical solvers, simulation studies,
or experimental methods using native language idioms and
ecosystem-specific packages. SiPy’s responsibility is limited to
preparing inputs, invoking the appropriate runtime, and collecting
outputs in a structured and reproducible manner. As a result,
new methods can be incorporated into SiPy workflows without
requiring changes to the SiPy codebase, avoiding the maintenance
burden and conceptual complexity associated with function-by-

function wrapping.

This script-level extensibility has several practical advantages.
First, it eliminates the need for SiPy to anticipate or support
every conceivable statistical or numerical method. As the backend
languages remain fully accessible, methodological completeness
is achieved through execution rather than abstraction. Second,
it preserves transparency and auditability: backend scripts are
explicit, inspectable artefacts that can be version-controlled, shared,
and executed independently of SiPy. Third, it respects disciplinary
expertise, allowing statisticians, data analysts, and numerical
modellers to work directly in Python, R, or Julia without adapting

their workflows to a single, unified programming interface.

User-defined backends also provide a natural pathway
for experimentation and method development. Prototype
implementations can be written rapidly as standalone scripts and
integrated into larger workflows through SiPy’s orchestration layer.
Performance-critical components can be iterated on independently

in Julia, while statistical validation and benchmarking can be
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carried out in R. Python scripts can likewise be executed as
external backends, enabling symmetry between orchestration
and computation and allowing complex preprocessing or
auxiliary analyses to be isolated as reproducible execution units.
SiPy coordinates these components without imposing a unified
programming model, making language boundaries explicit rather

than implicit.

By elevating script execution across Python, R, and Julia to a first-
class capability, SiPy avoids the common pitfalls of tightly coupled
multi-language systems while remaining extensible, maintainable,
and pedagogically clear. This design choice reinforces SiPy’s role as
a coordination framework for statistical and data analysis rather
than as a monolithic analytical environment, and it underpins the
scalability of the three-legged architecture as additional scriptable

computational backends are incorporated in the future.

Figure 5: Running External Python Script.

Using SiPy with R and Julia as Backend

SiPy’s three-legged architecture enables practical workflows in
which Python orchestrates data processing and visualization while
R and Julia provide specialized computational support (Figure 1).
The following five examples illustrate common patterns relevant to

statistical and data analysis.

Firstly, in clinical survival analysis with simulation-based
inference [15] where patient datasets can be pre-processed and
cleaned in Python, with missing values imputed and covariates
transformed. Risthenusedto fitsurvivalmodels or Cox proportional
hazards regressions, taking advantage of its extensive statistical
packages. For uncertainty estimation or bootstrap resampling,
computationally intensive simulations can be executed in Julia,
allowing rapid assessment of model stability using simulations
and prediction intervals. Results are reintegrated into Python

for visualization and reporting, producing a fully reproducible
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analytical pipeline. Secondly, in ecological population modelling
[16,17] where sensor data from field studies can be aggregated
and filtered in Python. R performs species distribution modelling
or generalized linear mixed models to evaluate environmental
and ecological covariates. Julia executes large-scale simulations,
such as stochastic population models or differential equation-
based ecosystem projections, which would be computationally
prohibitive in pure Python or R. SiPy manages the seamless
transfer of intermediate results and ensures traceable, scriptable
execution. Thirdly, in economic survey data analysis [18-20]
where survey responses are imported, cleaned, and weighted in
Python. R is used for survey-weighted regressions, hypothesis
testing, and inferential statistics. Julia performs Monte Carlo
simulations to quantify uncertainty in policy impact estimates
or to explore alternative economic scenarios. By centralizing
control in Python, analysts can iterate on preprocessing or
model parameters without manually coordinating multiple tools.
Fourthly, in high-dimensional genomic data processing [21] where
genomic datasets with millions of features can be pre-processed
and filtered in Python using efficient array operations. R executes
statistical analyses such as differential expression or pathway
enrichment testing. Julia carries out large-scale permutation tests,
principal component analyses, or other computationally intensive
multivariate operations, returning results to Python for integration
into interactive notebooks and reports. And finally, in method
development and prototyping [8,12]; researchers developing new
statistical methods can implement prototypes entirely in Python
for flexibility. Once an algorithm is performance-critical, it can be
ported to Julia for intensive simulations, resampling, or numerical
optimization. R is then used to benchmark the new method against
established statistical procedures. SiPy orchestrates this cycle,
maintaining reproducibility and reducing the friction of switching

languages.

Across these examples, SiPy functions as the central orchestrator,
coordinating workflow steps, managing data exchange, and
integrating results into a coherent, reproducible pipeline. By using
R and Julia as backends, users benefit from both methodological
rigor and high-performance computation while maintaining the
accessibility and flexibility of Python-driven analysis [22,23].
Hence, future work can be both porting commonly used operations
from both R and Julia (such as shown in SiPy 0.7.0 [14], or building

a library of R and Julia scripts for use in SiPy.
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Conclusion

This work presents SiPy 0.8.0 as a three-legged statistical and
data analysis framework that explicitly integrates Python, R, and
Julia through a transparent, subprocess-based architecture. By
treating R and Julia as complementary computational backends
rather than competing frontends, SiPy offers a sustainable
and reproducible approach to combining statistical rigor with
performance-aware computation within a single, coherent

workflow.

Supplementary Materials

Source codes of SiPy can be found at https://github.com/
mauriceling/sipy while documentation can be found at https://
github.com/mauriceling/sipy/wiki. The release page for SiPy 0.8.0
(codenamed as Mango Yoghurt Cake, and released on 09 January
2026) can be found at https://bit.ly/SiPy-080.
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Appendix A: Comparison Execution Time Between SiPy and R

A preliminary benchmark was performed using the same set of data to execute linear regression (command = rregress Im data=df y=yN

x=all) within SiPy and from the generated R script. The operations for SiPy is as follows:
let yN be clist 1.2, 2.3, 3.1, 4.8, 5.6, 6.2, 7.9, 8.4,9.7,10.5
letyBbedlist1,0,1,0,1,0,1,1,0,1

letyCbeslistA, B, C, A B, C A B,C A
letx1beclist2,3,5,7,11,13,17,19, 23, 29

letx2 be clist 1, 4,9, 16, 25, 36, 49, 64, 81, 100

letx3 be clist 5, 8, 6, 10, 12, 14, 18, 20, 24, 30

let x4 be clist 3.1, 5.2, 2.7,8.6,9.1,4.4,7.8,6.5,10.2,11.3

let x5 be clist 100, 90, 80, 70, 60, 50, 40, 30, 20, 10

let df be dataframe yN:yN yB:yB yC:yC x1:x1 x2:x2 x3:x3 x4:x4 x5:x5
rregress Im data=df y=yN x=all

And this is the generated R script:

data <- read.csv(“data_ffce36e7.csv”)

model <- Im(yN ~ yB + yC + x1 + x2 + x3 + x4 + x5, data=data)
summary(model)

The linear regression was performed 10 times and the summary results (Table A1) shows that SiPy averaged 27 times slower than the
native R code (p-value of 8.32E-14 for 2-samples t-test with unequal variance). The most likely reason is the overhead in code generation

and disk operations. Despite so, execution time of about 1 second in SiPy is still practically acceptable.

Table Al. Execution Time Between SiPy and R.

Statistic in Seconds SiPy R
Minimum 0.7850 0.0287
Maximum 0.8803 0.0323
Median 0.8274 0.0306
Mean 0.8304 0.0303
Standard Deviation 0.03468 0.00102
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Appendix B: Executing Shell-Based Commands

SiPy supports the direct execution of arbitrary shell-based commands using a string-based interface that preserves native shell semantics,
including pipes, redirection, and command chaining (Figure A1). Any command that can be executed from the system command line can
therefore be invoked unchanged from within SiPy. Functionally, this mechanism generalises SiPy’s execution model beyond language
runtimes. The operating system shell itself becomes a backend, allowing external programs, utilities, and workflows to be integrated
without additional wrappers or plugins. This includes file system operations, data preprocessing steps, environment inspection, and the
invocation of third-party tools that fall outside Python, R, or Julia.

The primary implication of this design is that extensibility in SiPy is no longer constrained by supported languages or APIs. Methodological
completeness is achieved through execution rather than abstraction: if a tool can be run from the command line, it can participate in a
SiPy workflow. This further reduces the need for bespoke integrations while keeping execution boundaries explicit, inspectable, and
reproducible. Shell-based execution is intended for advanced usage and aligns with SiPy’s broader philosophy of treating scripts and

commands as first-class computational artefacts rather than embedding functionality within the framework itself.

Figure A1: Executing Shell-Based Commands.
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