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Abstract
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Python and R dominate contemporary scientific data analysis due to their mature ecosystems and extensive methodological support, 
yet performance limitations often arise in computation-intensive scenarios, leading to fragmented multi-language workflows. SiPy is 
a lightweight statistical interface written in Python that addresses this challenge by explicitly coordinating multiple languages while 
preserving clear execution boundaries. Building on earlier versions that integrated R as a statistical backend, this article reports 
SiPy 0.8.0 (released on 09 January 2026), which extends the framework to incorporate Julia as a high-performance computational 
engine and formalises script-level execution across Python, R, and Julia using a uniform subprocess-based model. In this three-
legged architecture, Python functions both as the primary orchestration layer and as a scriptable computational backend, R provides 
rigorously validated statistical methods, and Julia supports performance-critical numerical computation and simulation. The system 
architecture underlying this design is described, including environment isolation, script-based execution, and conservative data 
exchange strategies that prioritise reproducibility and portability.
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Introduction

Python and R have become the dominant languages in 
contemporary scientific workflows [1] due to their mature 
ecosystems, extensive libraries, and strong community support. 
Python excels as a general-purpose scientific programming 
language, offering broad interoperability, flexible orchestration, 
and a rich ecosystem for data manipulation, visualization, and 
automation [2]. R, in contrast, has established itself as the de facto 
standard for statistical analysis, inference, and methodological 

development [3], with a depth of rigor and breadth of statistical 
techniques that remain unmatched in many domains. Together, 
Python and R underpin a large proportion of modern computational 
research and reproducible data analysis pipelines [1]. SiPy [4] is 
a lightweight statistical interface written in Python, and has been 
demonstrated as a potential platform for incorporating R methods 
while reducing the learning curve needed to learn R.

Despite these strengths, scientific workflows frequently 
encounter performance limitations [5] when computational 
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demands increase, particularly in scenarios involving large-scale 
simulations, complex numerical solvers, or algorithmically intensive 
models. In such cases, researchers often face the so-called two-
language problem [6]; where high-level languages such as Python or 
R are used for prototyping and analysis, while performance-critical 
components must be re-implemented in lower-level languages such 
as C, C++, or Fortran [7,8]. This separation introduces additional 
complexity, increases development and maintenance costs, and 
raises barriers to reproducibility and extensibility.

Julia was explicitly designed to address this challenge by 
reconciling high-level expressiveness with low-level performance, 
thereby collapsing the traditional divide between prototyping and 
execution. As articulated by Bezanson., et al. [6], Julia’s language 
design enables developers to write code that is both readable and 
performant, allowing algorithmic descriptions to remain close to 
their mathematical formulations without sacrificing computational 
efficiency. This design philosophy directly targets the two-language 
problem and offers an alternative paradigm for performance-
critical scientific computing. Empirical evidence supports Julia’s 
effectiveness in domains where numerical performance and 
composability are central. High-performance scientific areas; most 
notably differential equation solving, simulation frameworks, 
and large-scale numerical modelling; have reported substantial 
success with Julia, demonstrating both competitive or superior 
performance relative to established tools and a high degree of 
composability across scientific abstractions [9,10]. These reports 
further highlight Julia’s suitability as a computational engine 
within broader scientific workflows, rather than as a wholesale 
replacement for existing languages [11]. Importantly, Julia’s 
strengths do not diminish the continued relevance of Python and 
R; instead, they suggest a complementary relationship in which 
each language occupies a distinct and well-defined role [12,13]. 
Python remains well suited for orchestration, workflow control, 
and integration across heterogeneous tools. R continues to serve as 
the authoritative environment for statistical modelling, inference, 
and methodological validation. Julia, meanwhile, provides a natural 
home for performance-critical numerical computation, algorithm 
development, and simulation-heavy workloads [13].

Motivated by this perspective, this article reports SiPy 0.8.0 
(released on 09 January 2026) as adopting a three-legged 

architecture that leverages the respective strengths of Python, R, 
and Julia. In SiPy, Python functions as the primary orchestration 
layer, coordinating data flow, execution, and user interaction. R 
is employed for statistical analysis and inference, drawing on its 
extensive and rigorously validated ecosystem. Julia is incorporated 
as a high-performance computational backend, enabling efficient 
execution of numerically intensive tasks while maintaining clarity 
and expressiveness in algorithmic implementation. By explicitly 
delineating the roles of each language and integrating them within 
a coherent framework, SiPy seeks to provide a practical and 
extensible approach to multi-language scientific computing. 

Incorporating Julia into Python/R-based SiPy Version 0.7.0

R has been an important statistical engine in SiPy since version 
0.6.0 [4] where clear execution boundaries between languages 
have been preserved, which is also the basis of improvement from 
SiPy since version 0.6.0 [4] to SiPy since version 0.7.0 [14]. Rather 
than embedding interpreters or relying on in-process foreign 
function interfaces, SiPy adopts a subprocess-based execution 
model [4]; in which Python serves as the primary orchestration 
layer, coordinating the invocation of R as external computational 
backends. This architectural choice prioritises reproducibility, 
portability, and transparency over tight coupling, and reflects the 
intended role of SiPy as a coordination and integration layer rather 
than a monolithic runtime. Incorporation of Julia into SiPy will use 
the same mode. The main reason for choosing this subprocess-
based method over language bridge; such as rpy2 (Python 
package to call R), and PyJulia (Python package to call Julia) is 
that subprocess package is native in Python Standard Library and 
does not require additional installations for subprocess-based 
method to work. This reduces future maintenance load. Moreover, 
using language bridge is likely to result in a blurring of boundaries 
between SiPy, R, and Julia.

At the core of SiPy’s architecture is a unidirectional execution 
flow initiated from Python (Figure 1). Analytical tasks are 
expressed in Python and, where appropriate, translated into 
language-specific scripts that are executed in isolated R or Julia 
subprocesses. Python is responsible for preparing inputs, invoking 
the appropriate runtime, monitoring execution, and collecting 
outputs. This execution model provides several advantages. First, 
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it avoids the complexity and fragility associated with embedding 
language runtimes or maintaining long-lived cross-language 
bindings. Second, it ensures that each language executes within 
its native runtime environment, thereby preserving expected 
semantics and reducing unexpected side effects. Third, subprocess-
based execution makes failure modes explicit and recoverable, 
as errors and warnings are captured directly from standard 
output and error streams. The same execution strategy is applied 
consistently across R and Julia backends, allowing both languages 
to be treated as interchangeable computational engines from the 
perspective of the Python orchestration layer.

as standalone units within their respective runtimes. Inputs are 
passed through explicitly defined files or arguments, and outputs 
are written to structured data formats such as plain text, CSV, 
or JSON. By enforcing explicit language boundaries, SiPy avoids 
implicit state sharing across languages and reduces the cognitive 
load associated with debugging multi-language workflows. 
This design choice also aligns with established best practices in 
reproducible research, where computational steps are expected to 
be inspectable, re-executable, and auditable.

Data exchange between Python, R, and Julia in SiPy is 
intentionally conservative. Rather than attempting to share in-
memory objects or complex language-specific data structures, 
SiPy relies on serialised representations that are widely supported 
across languages. Tabular data, model outputs, and summary 
statistics are exchanged using standard formats that prioritise 
transparency and long-term stability. While this approach incurs 
modest practical overhead relative to in-process communication 
(see Appendix A, B), it offers clear benefits in terms of robustness, 
reproducibility, and ease of inspection. Moreover, because the most 
computationally intensive operations are delegated to the backend 
languages, the overhead associated with data serialisation does not 
typically dominate overall execution time.

The architectural decisions underlying SiPy reflect a deliberate 
trade-off between tight integration and long-term sustainability. 
By avoiding deep interlanguage coupling (such as the use of 
language bridge), SiPy reduces maintenance burden and minimises 
sensitivity to changes in any individual language’s internal APIs. 
At the same time, by assigning well-defined roles to Python, R, 
and Julia, the framework leverages the strengths of each language 
without forcing convergence onto a single programming model. 
In this sense, SiPy’s architecture is not intended to abstract away 
language differences entirely, but rather to make them explicit 
and manageable. This design supports both methodological 
development and pedagogical clarity, allowing users to reason 
about where and why a particular language is employed within a 
given workflow.

Testing Julia and R in SiPy

Two tests were performed to demonstrate that Julia is callable 
from SiPy. The first test is on linear regression. Given that the 
dependent variable, yN, is {1.2, 2.3, 3.1, 4.8, 5.6, 6.2, 7.9, 8.4, 9.7, 
10.5}; and the independent variables, x1 and x2, to be {2.0, 3.0, 5.0, 
7.0, 11.0, 13.0, 17.0, 19.0, 23.0, 29.0} and {1.0, 4.0, 9.0, 16.0, 25.0, 
36.0, 49.0, 64.0, 81.0, 100.0} respectively; both R and Julia were 

Figure 1: Interoperability Between Python, R, and Julia in SiPy.

To support reproducibility and ease of deployment, SiPy 
emphasises explicit control over execution environments. Each 
backend language is invoked using a known executable path and 
a controlled runtime configuration, avoiding reliance on user-level 
global installations wherever possible. For R, SiPy supports the 
use of a portable R distribution bundled alongside the framework, 
enabling analyses to be executed in a self-contained environment 
with a known set of packages. For Julia, SiPy adopts a similar 
approach by invoking a locally bundled Julia binary in conjunction 
with an isolated project environment and package depot. In both 
cases, environment variables and runtime flags are used to prevent 
leakage into user-specific configuration files or global package 
directories. This approach allows SiPy workflows to be distributed, 
reproduced, and executed across systems with minimal external 
dependencies, while remaining agnostic to operating system–
specific package managers.

SiPy communicates with R and Julia through dynamically 
generated scripts rather than direct function calls. These scripts 
encode the analytical intent expressed in Python and are executed 
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asked to run a linear regression with the model, yN = b1(x1) + 
b2(x2) + b0. The test shows that both R and Julia gave the same 
results (Figure 2) as yN = 0.608(x1) – 0.070(x2) + 0.828 with 
R-square of 0.968; thereby, demonstrating that Julia is callable 
from SiPy. Similarly, R-based and Julia-based linear regression can 
also be called if data is in a file (Figure 3).

The second test is to execute external R and Julia scripts from 
within SiPy (Figure 4). In this test, a data file in the form of comma-
delimited file was used to perform linear regression using both R 
and Julia. Differing from the first test where the codes for linear 
regression were implemented within SiPy, this test assumes that 
the R or Julia operations were provided as a script – r_lm.R and 
julia_lm.jl respectively; where the scripts will be called from within 
SiPy, and parameters / arguments are routed from SiPy into the 
scripts. The test shows that the script execution is successful. This 
suggests that users can link up R and Julia scripts for execution 
within SiPy. 

Figure 2: Running Linear Regression on R and Julia Using  
Identical Data Values.

Figure 3: Running Linear Regression on R and Julia Using  
Identical Data File.

Figure 4: Running External R and Julia Scripts on Identical Data 
File.
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Script-Level Extensibility and User-Defined Backends

A central design principle of SiPy is that extensibility is achieved 
at the level of executable scripts rather than through exhaustive 
API wrapping or language-level bindings. SiPy does not attempt to 
re-expose the full functionality of R or Julia within Python, nor does 
it seek to mirror the evolving APIs of these languages. Instead, SiPy 
provides a controlled execution framework in which user-authored 
Python, R, or Julia scripts are treated as first-class computational 
backends. This approach explicitly shifts the extension mechanism 
from the SiPy source code to the user’s analytical scripts, allowing 
the framework to remain lightweight while retaining access to the 
full expressive power of each backend language.

Under this model; any valid Python (Figure 5), R, or Julia script 
that can be executed from the command line can also be executed 
from within SiPy. Users are free to write scripts that implement 
bespoke statistical models, numerical solvers, simulation studies, 
or experimental methods using native language idioms and 
ecosystem-specific packages. SiPy’s responsibility is limited to 
preparing inputs, invoking the appropriate runtime, and collecting 
outputs in a structured and reproducible manner. As a result, 
new methods can be incorporated into SiPy workflows without 
requiring changes to the SiPy codebase, avoiding the maintenance 
burden and conceptual complexity associated with function-by-
function wrapping.

This script-level extensibility has several practical advantages. 
First, it eliminates the need for SiPy to anticipate or support 
every conceivable statistical or numerical method. As the backend 
languages remain fully accessible, methodological completeness 
is achieved through execution rather than abstraction. Second, 
it preserves transparency and auditability: backend scripts are 
explicit, inspectable artefacts that can be version-controlled, shared, 
and executed independently of SiPy. Third, it respects disciplinary 
expertise, allowing statisticians, data analysts, and numerical 
modellers to work directly in Python, R, or Julia without adapting 
their workflows to a single, unified programming interface.

User-defined backends also provide a natural pathway 
for experimentation and method development. Prototype 
implementations can be written rapidly as standalone scripts and 
integrated into larger workflows through SiPy’s orchestration layer. 
Performance-critical components can be iterated on independently 
in Julia, while statistical validation and benchmarking can be 

carried out in R. Python scripts can likewise be executed as 
external backends, enabling symmetry between orchestration 
and computation and allowing complex preprocessing or 
auxiliary analyses to be isolated as reproducible execution units. 
SiPy coordinates these components without imposing a unified 
programming model, making language boundaries explicit rather 
than implicit.

By elevating script execution across Python, R, and Julia to a first-
class capability, SiPy avoids the common pitfalls of tightly coupled 
multi-language systems while remaining extensible, maintainable, 
and pedagogically clear. This design choice reinforces SiPy’s role as 
a coordination framework for statistical and data analysis rather 
than as a monolithic analytical environment, and it underpins the 
scalability of the three-legged architecture as additional scriptable 
computational backends are incorporated in the future.

Figure 5: Running External Python Script.

Using SiPy with R and Julia as Backend

SiPy’s three-legged architecture enables practical workflows in 
which Python orchestrates data processing and visualization while 
R and Julia provide specialized computational support (Figure 1). 
The following five examples illustrate common patterns relevant to 
statistical and data analysis.

Firstly, in clinical survival analysis with simulation-based 
inference [15] where patient datasets can be pre-processed and 
cleaned in Python, with missing values imputed and covariates 
transformed. R is then used to fit survival models or Cox proportional 
hazards regressions, taking advantage of its extensive statistical 
packages. For uncertainty estimation or bootstrap resampling, 
computationally intensive simulations can be executed in Julia, 
allowing rapid assessment of model stability using simulations 
and prediction intervals. Results are reintegrated into Python 
for visualization and reporting, producing a fully reproducible 
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analytical pipeline. Secondly, in ecological population modelling 
[16,17] where sensor data from field studies can be aggregated 
and filtered in Python. R performs species distribution modelling 
or generalized linear mixed models to evaluate environmental 
and ecological covariates. Julia executes large-scale simulations, 
such as stochastic population models or differential equation–
based ecosystem projections, which would be computationally 
prohibitive in pure Python or R. SiPy manages the seamless 
transfer of intermediate results and ensures traceable, scriptable 
execution. Thirdly, in economic survey data analysis [18–20] 
where survey responses are imported, cleaned, and weighted in 
Python. R is used for survey-weighted regressions, hypothesis 
testing, and inferential statistics. Julia performs Monte Carlo 
simulations to quantify uncertainty in policy impact estimates 
or to explore alternative economic scenarios. By centralizing 
control in Python, analysts can iterate on preprocessing or 
model parameters without manually coordinating multiple tools. 
Fourthly, in high-dimensional genomic data processing [21] where 
genomic datasets with millions of features can be pre-processed 
and filtered in Python using efficient array operations. R executes 
statistical analyses such as differential expression or pathway 
enrichment testing. Julia carries out large-scale permutation tests, 
principal component analyses, or other computationally intensive 
multivariate operations, returning results to Python for integration 
into interactive notebooks and reports. And finally, in method 
development and prototyping [8,12]; researchers developing new 
statistical methods can implement prototypes entirely in Python 
for flexibility. Once an algorithm is performance-critical, it can be 
ported to Julia for intensive simulations, resampling, or numerical 
optimization. R is then used to benchmark the new method against 
established statistical procedures. SiPy orchestrates this cycle, 
maintaining reproducibility and reducing the friction of switching 
languages.

Across these examples, SiPy functions as the central orchestrator, 
coordinating workflow steps, managing data exchange, and 
integrating results into a coherent, reproducible pipeline. By using 
R and Julia as backends, users benefit from both methodological 
rigor and high-performance computation while maintaining the 
accessibility and flexibility of Python-driven analysis [22,23]. 
Hence, future work can be both porting commonly used operations 
from both R and Julia (such as shown in SiPy 0.7.0 [14], or building 
a library of R and Julia scripts for use in SiPy.

Conclusion

This work presents SiPy 0.8.0 as a three-legged statistical and 
data analysis framework that explicitly integrates Python, R, and 
Julia through a transparent, subprocess-based architecture. By 
treating R and Julia as complementary computational backends 
rather than competing frontends, SiPy offers a sustainable 
and reproducible approach to combining statistical rigor with 
performance-aware computation within a single, coherent 
workflow.

Supplementary Materials

Source codes of SiPy can be found at https://github.com/
mauriceling/sipy while documentation can be found at https://
github.com/mauriceling/sipy/wiki. The release page for SiPy 0.8.0 
(codenamed as Mango Yoghurt Cake, and released on 09 January 
2026) can be found at https://bit.ly/SiPy-080. 
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Appendix A: Comparison Execution Time Between SiPy and R

A preliminary benchmark was performed using the same set of data to execute linear regression (command = rregress lm data=df y=yN 
x=all) within SiPy and from the generated R script. The operations for SiPy is as follows:

let yN be clist 1.2, 2.3, 3.1, 4.8, 5.6, 6.2, 7.9, 8.4, 9.7, 10.5

let yB be dlist 1, 0, 1, 0, 1, 0, 1, 1, 0, 1

let yC be slist A, B, C, A, B, C, A, B, C, A

let x1 be clist 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

let x2 be clist 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

let x3 be clist 5, 8, 6, 10, 12, 14, 18, 20, 24, 30

let x4 be clist 3.1, 5.2, 2.7, 8.6, 9.1, 4.4, 7.8, 6.5, 10.2, 11.3

let x5 be clist 100, 90, 80, 70, 60, 50, 40, 30, 20, 10

let df be dataframe yN:yN yB:yB yC:yC x1:x1 x2:x2 x3:x3 x4:x4 x5:x5

rregress lm data=df y=yN x=all

And this is the generated R script:

data <- read.csv(“data_ffce36e7.csv”)

model <- lm(yN ~ yB + yC + x1 + x2 + x3 + x4 + x5, data=data)

summary(model)

The linear regression was performed 10 times and the summary results (Table A1) shows that SiPy averaged 27 times slower than the 
native R code (p-value of 8.32E-14 for 2-samples t-test with unequal variance). The most likely reason is the overhead in code generation 
and disk operations. Despite so, execution time of about 1 second in SiPy is still practically acceptable.

Table A1. Execution Time Between SiPy and R.

Statistic in Seconds SiPy R
Minimum 0.7850 0.0287
Maximum 0.8803 0.0323
Median 0.8274 0.0306
Mean 0.8304 0.0303
Standard Deviation 0.03468 0.00102
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Appendix B: Executing Shell-Based Commands

SiPy supports the direct execution of arbitrary shell-based commands using a string-based interface that preserves native shell semantics, 
including pipes, redirection, and command chaining (Figure A1). Any command that can be executed from the system command line can 
therefore be invoked unchanged from within SiPy. Functionally, this mechanism generalises SiPy’s execution model beyond language 
runtimes. The operating system shell itself becomes a backend, allowing external programs, utilities, and workflows to be integrated 
without additional wrappers or plugins. This includes file system operations, data preprocessing steps, environment inspection, and the 
invocation of third-party tools that fall outside Python, R, or Julia.

The primary implication of this design is that extensibility in SiPy is no longer constrained by supported languages or APIs. Methodological 
completeness is achieved through execution rather than abstraction: if a tool can be run from the command line, it can participate in a 
SiPy workflow. This further reduces the need for bespoke integrations while keeping execution boundaries explicit, inspectable, and 
reproducible. Shell-based execution is intended for advanced usage and aligns with SiPy’s broader philosophy of treating scripts and 
commands as first-class computational artefacts rather than embedding functionality within the framework itself.

Figure A1: Executing Shell-Based Commands.
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