
Acta Scientific COMPUTER SCIENCES

 Volume 7 Issue 7 October 2025

Technological Stages of Neural Network AI Generation of System Program Code Based on Modular
Neuro Integration

Review Article

Evgeny Bryndin*
Research Department, Research Center «Natural Informatics», Novosibirsk, Russia

*Corresponding Author: Evgeny Bryndin, Research Department, Research Center
«Natural Informatics», Novosibirsk, Russia.

Received: August 01, 2025
Published: September 06, 2025
© All rights are reserved by Evgeny Bryndin.

 Abstract
 A trend of vibe coding has emerged in the world of technology – code generation by neural networks from natural language. For
example, Cursor via ChatGPT 4.1 can generate various software modules based on descriptions of their functions in natural language.
Creating large software systems from generated modules requires integration. Neurocomplexation of software modules is the pro-
cess of integrating or combining various software modules to create complex systems based on neural models or artificial neural
networks. This approach is proposed to be used in the field of artificial intelligence and machine learning to build complex systems
where individual modules interact and jointly perform tasks. Promising areas of application are, firstly, the creation of cognitive
systems and intelligent ensembles of agents and assistants. Secondly, modeling of thinking and brain function for research in neu-
roscience, and thirdly, the development of complex solutions in the field of automation and robotics. The key features of the neural
network integration process are, firstly, the integration of modules with different functions (recognition, data processing, training).
Secondly, the use of neural network algorithms for adaptation and self-training. Thirdly, ensuring the flexibility and scalability of the
system.

Keywords: Neural Network Technology; AI Generation; System Program Code; Modular Neural Integration

Introduction

Currently, neural network system programming is developing.
This is a direction of artificial intelligence that combines the devel-
opment and implementation of neural network models in system
software to solve various problems, such as automation, optimiza-
tion, security and monitoring of systems. This area includes the
creation of software solutions that use neural networks to process
large amounts of data, make decisions and manage systems at a
low level. The main aspects of neural network system program-
ming include:
•	 Integration of neural networks into system software - devel-

opment of modules and services that use neural networks to
perform tasks, such as anomaly detection, forecasting or au-
tomatic control.

•	 Training and optimization of models: Preparation and con-
figuration of neural network models for specific system tasks,
which requires knowledge in both machine learning and sys-
tem programming.

•	 Use of specialized frameworks: Such as TensorFlow, Py-
Torch, ONNX, which allow you to integrate neural networks
into system applications and drivers.

•	 Working with low-level and high-level programming lan-
guages: to develop efficient and fast solutions using neural
networks.

•	 Ensuring security and reliability: The implementation of
neural network solutions should take into account security
requirements, especially in critical systems.

The areas of application are, firstly, automatic control of equip-
ment and robotics, secondly, detection and elimination of failures
in systems, thirdly, optimization of resources and energy consump-
tion, fourthly, security and authentication at the level of system
services.

In general, neural network system programming requires in-
terdisciplinary knowledge in the field of machine learning, sys-

Citation: Evgeny Bryndin. “Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration". Acta
Scientific Computer Sciences 7.7 (2025): 03-09.

tem programming and architecture of computing systems [1]. It
is based on full integration with AI tools that understand human
language and write code for you. Here you only set the direction,
simply describing what exactly you want to get, and the AI neural
network does the rest and works in the format of a live dialogue. In
fact, it is enough to write a high-quality request, and in a few min-
utes you will receive a ready-made system program. Today, 25% of
startups in the latest stream of Y Combinator - a venture fund for
startups - use code that is 95% generated by neural networks. The
EI Capitan supercomputer, used as a high-performance comput-
ing system, and the OpenAI supercomputer-class infrastructure to
support the training and deployment of large-scale AI models, are
effectively promoting the development of neural network systems
programming. According to GitHub, the implementation of Copilot,
the OpenAI supercomputer-class infrastructure, and the EI Capi-
tan Supercomputer increases the productivity of programmers so
much that it even affects the world’s GDP.

The article discusses the technological stages of neural network
AI generation of system code based on modular neural integration
for the development of neural network system programming.

Creating self-learning neural networks for module code gen-
eration

A self-learning neural network for modular code generation is
capable of learning, adapting, and generating code based on de-
scribed modules or their templates. Let’s consider the main com-
ponents and stages of developing such systems.
•	 Data collection and preparation:

-	 Creation of extensive datasets of source code, documenta-
tion, comments, and templates.

-	 Data markup for training models to understand the modular
structure of programs.

•	 Neural network model:
-	 Using transformers (e.g., GPT, Codex) or other architectures

that have proven themselves in code generation.
-	 Models are trained on examples, breaking down tasks into

modules or components, which facilitates modular genera-
tion.

•	 Modularity and structuring:
-	 Development of a neural network that solves the problem of

modular code generation.
-	 Training a neural network to create holistic, coherent pro-

grams of modules.

•	 Self-training and retraining:
-	 Implementation of active learning mechanisms: The

system learns from new data collected from user correc-
tions, feedback or code execution.

-	 Using reinforcement learning methods to improve the qual-
ity of generation.

•	 Interactivity and modularity:
-	 Providing the user with the ability to add, edit and combine

modules so that the neural network automatically ensures
their coherence.

•	 Integration and automation:
-	 Implementation of the system into development processes,

CI/CD, automated testing and deployment. - Using version
control systems and metadata to track changes and im-
provements.

•	 Key challenges and solutions:
-	 Ensuring the correctness and security of the generated

code.
-	 Training on a variety of data to increase versatility.
-	 Ensuring modular structuring for easy reuse of compo-

nents.
-	 Generating templates and components for web applica-

tions, microservices or embedded systems.
-	 Automatic generation of API wrappers and integration

modules.
-	 Tools for automatic addition and correction of code based

on modular templates.

Creating self-learning neural networks for modular code gen-
eration requires a combination of knowledge in machine learning,
system architecture, programming and automation [2]. This al-
lows to significantly speed up the development process, improve
its quality and ensure the adaptability of systems to new require-
ments.

The creators of self-learning neural networks for modular code
generation are specialists in AI programming. Intelligent program-
ming specialists are professionals involved in the development of
methods, systems and technologies based on artificial intelligence
to automate the programming process, improve code quality and
increase the efficiency of software development. Their key compe-
tencies and areas of activity include:

04

Citation: Evgeny Bryndin. “Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration". Acta
Scientific Computer Sciences 7.7 (2025): 03-09.

Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration

•	 Knowledge of artificial intelligence and machine learning
methods:

-	 Development and implementation of model training algo-
rithms to automate programming tasks.

-	 Use of neural network architectures, such as transformers,
to generate and analyze code.

•	 Natural language processing (NLP):
-	 Creating systems that understand and interpret require-

ments and descriptions of tasks in natural language.
-	 Developing models that can transform text queries into

working code.
•	 Programming automation:

-	 Developing tools for automatic writing, correction and opti-
mization of program code.

-	 Implementation of intelligent code completion, refactoring
and testing systems.

•	 Knowledge of programming and software architectures:
-	 Deep understanding of programming languages, data struc-

tures, algorithms.
-	 Skills in designing systems using AI to support development.

•	 Data engineering and data management:
-	 Collecting, preparing and processing large volumes of data

for training models.
-	 Creating and maintaining datasets with code and require-

ments.
•	 Development and implementation of expert systems:

-	 Building systems that can make decisions and give recom-
mendations on programming based on knowledge and data.

•	 **Evaluation and testing of intelligent programming systems:
-	 Developing metrics for assessing the quality of the gener-

ated code.
-	 Conducting testing and validation of automated solutions.

•	 Interdisciplinary skills:
-	 Understanding aspects of linguistics, logic, automata theory

and computational theory.
-	 Ability to integrate knowledge from various fields to create

complex systems.
•	 Learning and development

-	 Continuously monitoring new research and technologies in
the field of AI and programming.

-	 Participation in scientific and practical developments to im-
prove methods of intelligent programming.

•	 Communication and Collaboration:
-	 Effective interaction with development teams, researchers

and business stakeholders to implement solutions. Intelli-
gent programming specialists are experts at the intersection
of artificial intelligence and software development, creating

intelligent systems that can automate and optimize the pro-
gramming process, increasing its efficiency and quality.

The creators of neural networks for generating program code
from natural language must have a number of competencies, in-
cluding both technical and interdisciplinary skills. The main ones
are:
•	 Knowledge of machine learning and deep learning:

-	 Understanding of neural network architectures (Trans-
formers, GPT, BERT, etc.).

-	 Skills in training, setting up and optimizing models.
•	 Programming and software development:

-	 Proficiency in programming languages (Python, Java, C++,
etc.).

-	 Experience with ML frameworks (TensorFlow, PyTorch).
•	 Natural language processing (NLP):

-	 Knowledge of text preprocessing methods, tokenization,
training language models.

-	 Understanding of the specifics of the programming lan-
guage and its syntax.

•	 Knowledge of programming and development concepts:
-	 Knowledge of data structures, algorithms, design patterns.
-	 Understanding of requirements for code quality, readability

and security.
•	 Analytical skills and data processing:

-	 Ability to collect, clean and analyze datasets of program
code.

-	 Creation and management of training data corpora.
•	 Skills for evaluating and testing models:

-	 Methods for assessing the quality of code generation.
-	 Development of tests and automated systems for checking

the generated code.
•	 Knowledge of the subject area:

-	 Understanding of the context of application and require-
ments for software.

•	 Interdisciplinary skills:
-	 Ability to work at the intersection of programming, linguis-

tics and machine learning.
•	 Communication and teamwork skills:

-	 Explaining technical solutions, interacting with a team of
developers and researchers.

•	 Continuous learning and research:
-	 Keep up to date with current research, new architectures

and methods in AI and NLP for code. These competencies
enable the creation of effective neural networks capable of
generating high-quality and secure software code based on
natural language requests.

05

Citation: Evgeny Bryndin. “Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration". Acta
Scientific Computer Sciences 7.7 (2025): 03-09.

Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration

Description of the system by module promts in natural lan-
guage

Description of a system using modular prompts in natural lan-
guage is based on the use of modular prompts, which allow for flex-
ible and efficient management of the user interaction process and
task execution [3]. Each module is a separate prompt responsible
for a specific function or aspect of the dialogue. System structure:
•	 General user input: The user enters a message or question

to be processed.
•	 Pre-processing module: Analyzes the input data, determines

the context, and highlights key parameters.
•	 Task segmentation module: Divides the task into subtasks

or parts to determine which prompts to use for each stage.
•	 Prompt selection module: Based on the analysis, selects

appropriate modular prompts to generate a response. For ex-
ample:

-	 Prompt for clarifying information
-	 Prompt for providing information
-	 Prompt for clarifying requirements

•	 Response generation module: Uses the selected prompts to
form a relevant and coherent response.

•	 Post-processing module: Checks and corrects the generated
response if necessary to ensure quality and accuracy.

•	 System advantages:
-	 Flexibility: Individual prompts can be easily

added or changed without having to rewrite the entire sys-
tem.

-	 Modularity: Provides ease of customization
and scalability.

-	 Quality control: Each part of processing and
generation can be optimized separately.

Neural network generation of software modules of the system
by promts

Neural network generation of software modules of a system
from prompts is an approach in which artificial intelligence based
on deep learning models automatically creates software compo-
nents of a system following given instructions or descriptions
(prompts) in natural language [4-7]. This method allows to speed
up development, increase flexibility and simplify the creation of
complex systems without the need for manual programming of
each module.

The main ideas and stages of this approach:
•	 Using prompts in natural language: The user or developer

specifies a description of the required module - its functional-
ity, interface, behavior features - in the form of a text prompt,
for example, creating an image processing module that recog-
nizes faces and highlights key features.

•	 Training and application of neural networks: Models such
as GPT, Codex, or specialized systems for code generation are
trained on large volumes of software data and can interpret
prompts and transform them into source code or architec-
tural diagrams.

•	 Automatic code generation: Based on the received prompt,
the neural network creates a software module - functions,
classes, interfaces, or even entire system components. This
may include writing code in programming languages, creat-
ing configuration files, or describing an API.

•	 Integration and testing: Generated modules are linked into
the system and automatic tests are performed to check their
correctness and compliance with requirements.

•	 Iterative improvement: If necessary, the user can refine the
prompts or set new instructions, and the neural network will
refine or create new versions of the modules.

The advantages of this approach are, firstly, rapid development:
significantly reduces the time for creating software components,
secondly, flexibility and adaptability, it is easy to change require-
ments by simply changing the prompts, thirdly, accessibility for
non-specialists: it allows people without deep knowledge of pro-
gramming to create complex systems, fourthly, it is possible to
automatically generate many modules for different tasks. For ex-
ample, the user asks the prompt: “Create a module for parsing JSON
responses and extracting user data. The neural network generates
source code in Python or another language that implements the
parser and data extraction function, which is then integrated into
the system.

Creation of self-learning neural networks for integration of
software modules

Self-learning neural networks for software module assembly al-
low you to automate and optimize the processes of selecting and
integrating system software modules. Below are the main steps
and recommendations for implementing such integration:

06

Citation: Evgeny Bryndin. “Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration". Acta
Scientific Computer Sciences 7.7 (2025): 03-09.

Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration

•	 Requirements and goals analysis:
-	 Define the tasks: Automatic module selection, their con-

figuration, compatibility and optimization.
-	 Specify the performance criteria: Selection accuracy,

speed, adaptability.
•	 Data collection and preparation:

-	 Collect data on existing modules: Characteristics, inter-
faces, dependencies, versions.

-	 Collect historical data on assembly, successful and unsuc-
cessful configurations.

-	 Process the data: Cleaning, normalization, annotation.
•	 Designing the neural network architecture:

-	 Select the model type: For example, transformers, re-
current networks or multilayer perceptrons. - You can use
models capable of processing structured data and rela-
tionships, such as graph neural networks (GNN).

-	 Use module characteristics, system requirements and
constraints as input data.

•	 Model training:
-	 Divide the data into training, validation, and test sets.
-	 Use reinforcement learning or supervised learning, de-

pending on the available data.
-	 Implement self-learning mechanisms: The model

should be able to adjust its parameters based on new data
and feedback.

•	 Implementation of the recommendation system:
-	 Build a mechanism that will suggest optimal configura-

tions based on the input requirements.
-	 Enable the ability to interact with the user to clarify the

requirements.
•	 Integration and testing:

-	 Implement the system in a production environment.
-	 Conduct testing on real scenarios, collect feedback for fur-

ther training.
•	 Continuous self-learning and updating:

-	 Ensure that new data is collected on the system’s opera-
tion.

-	 Tune the model on new data to improve accuracy and
adaptability.

-	 Use online training or re-training methods.
•	 Additional recommendations:

-	 Use modularity: Divide the system into components
for requirements analysis, configuration generation, and
training.

-	 Ensure transparency of model decisions for manual ad-
justment and trust.

-	 Implement mechanisms for checking compatibility and
testing the proposed composition of modules.

This is a general approach that can be adapted to the specific
tasks and conditions of your system. Technical details on imple-
mentation are needed, for example, the choice of architecture or
training algorithms.

Neural network integration of modules into a system program
The assembly of modules into a system program automatically

collects and configures software modules taking into account the
requirements, compatibility and optimization of integration, first-
ly, automatic linking of modules, secondly, ensuring compatibility
and optimization of system configurations. thirdly, self-training
of the model based on new data and feedback. Data is prepared,
firstly, module characteristics: functions, interfaces, dependencies,
versions, resources, secondly, data on collected configurations, suc-
cessful and unsuccessful examples. Thirdly, metadata on compat-
ibility and limitations, fourthly, preliminary processing: cleaning,
normalization, creation of features. The architecture of the neural
network model is selected. The model is trained and the integra-
tion system is implemented to assemble software modules with
the architecture, selection of algorithms or specific tools. Regular
retraining of the model is carried out to improve accuracy, adapt-
ability and ensure transparency of solutions.

The requirements for compatibility and optimization of the
neural network software module complex include the following
main aspects:
•	 Compatibility of software platforms and environments:

-	 Support for major operating systems (Windows, Linux,
macOS).

-	 Compatibility with popular frameworks for developing
neural networks (TensorFlow, PyTorch, Keras, MXNet,
etc.).

-	 Support for the necessary libraries and dependencies
(CUDA, cuDNN for GPU acceleration, OpenCL).

•	 Hardware compatibility:
-	 Adaptation for various types of processors (CPU, GPU,

TPU).
-	 Ability to work on various devices (local machines, serv-

ers, cloud platforms).
•	 Data and interface standards:

-	 Compliance with data format standards (e.g. JSON, Pro-
tocol Buffers, ONNX).

-	 Ensuring compatibility with external systems and APIs.

07

Citation: Evgeny Bryndin. “Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration". Acta
Scientific Computer Sciences 7.7 (2025): 03-09.

Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration

•	 Performance and optimization:
-	 Using computation acceleration methods (hardware ac-

celeration, computation graph optimization).
-	 Minimizing training and inference time.
-	 Efficient memory and resource management.
-	 Using quantization, pruning and other modeling tech-

niques to reduce the size of models and increase speed.
•	 Scalability and modularity:

-	 The ability to expand the complex by adding new mod-
ules.

-	 Ensuring joint operation of modules within a single sys-
tem.

•	 Security and reliability:
-	 Ensuring data protection and correct operation under

various conditions.
-	 Error handling and logging.

•	 Standardization and documentation:
-	 Clear description of interfaces and requirements for

modules.
-	 Support for versioning and compatibility between ver-

sions.

Effective implementation of these requirements ensures stable
operation of the neural network system programming complex, its
scalability and the ability to integrate into various information sys-
tems.

Conclusion
Neural network system programming combines the principles

of system software development with artificial intelligence and
neural network technologies. The main goals are, firstly, the cre-
ation of efficient, scalable and optimized systems capable of per-
forming automation tasks, data analysis, resource management and
interaction with hardware using neural network models, secondly,
the development of neural network algorithm modules integrated
into system software (drivers, operating systems, system services).
Thirdly, the optimization of computing processes to accelerate in-
ference and training of neural networks at the system level, includ-
ing the use of hardware accelerators (GPU, FPGA, TPU). Fourthly,
ensuring the interaction of neural network models with low-level
system components, such as device drivers, operating system ker-
nels. Fifthly, the creation of API interfaces and protocols for the
integration of neural network solutions into existing system plat-
forms. Sixthly, working with data streams, memory and resource

management to ensure high performance and reliability. Seventh,
automated security management of intelligent devices, robotics,
monitoring and diagnostic systems, as well as systems capable of
self-learning and adaptation in real time.

In general, neural network system programming requires deep
knowledge in the field of system programming and computer ar-
chitecture, as well as in the field of machine learning and neural
network technologies, which makes it an important and promising
area for the development of modern AGI intelligent information
technologies [8-12]. The future of neural network system program-
ming looks very promising and promising. Here are the main direc-
tions and trends that can be expected:
•	 Integration with traditional development tools:

-	 Neural networks will become an integral part of stan-
dard development environments, helping to automate
routine tasks such as coding, refactoring, and testing.

•	 Automation of system creation:
-	 The ability to automatically generate and optimize sys-

tem components based on high-level requirements.
-	 Using neural networks for rapid prototyping and adapt-

ing systems to changing conditions.
•	 Training on large amounts of system data:

-	 Neural networks will be trained on huge datasets of logs,
metrics, and source code to identify patterns and errors.

-	 This will improve the quality and security of system so-
lutions.

•	 Explainability and control:
-	 Developing methods for explaining neural network deci-

sions, which is especially important for system program-
ming, where reliability and transparency are needed.

•	 New programming paradigms:
-	 The transition to more declarative models based on the

description of the desired system behavior, rather than
specific algorithms.

-	 Neural networks will help in the interpretation and im-
plementation of such descriptions.

•	 Security and reliability:
-	 Creation of systems with built-in mechanisms for de-

tecting and correcting errors, as well as protection
against threats.

•	 Evolution of tools:
-	 The emergence of new IDEs and platforms specifically

designed for working with neural network systems,
which will offer automatic recommendations and assis-
tance in development.

08

Citation: Evgeny Bryndin. “Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration". Acta
Scientific Computer Sciences 7.7 (2025): 03-09.

Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration

•	 Human-neural network interaction:
-	 The development of interfaces that allow specialists to

effectively interact with neural networks to create, con-
figure and control system solutions.

Overall, neural network system programming will contribute to
the creation of smarter, automated and reliable systems, which will
open new horizons in the field of software development and sys-
tems engineering.

Bibliography

1.	 Alexander Kirichenko. “Neural Network Programming. Neuro-
computing Toolkit”. Created in the Intelligent Publishing Sys-
tem Ridero (2020).

2.	 Evgeny Bryndin. “Self-learning AI in Educational Research and
Other Fields”. Research on Intelligent Manufacturing and As-
sembly 3.1 (2025): 129-137.

3.	 Andy Smith. “Mastering Prompts: The Art of Interacting with
AI”. Samizdat (2024): 63.

4.	 H Peter Alesso. “Vibe Coding by Example”. Independently pub-
lished (2025): 329.

5.	 Greg Lim. “Vibe Coding for Beginners with Python and Chat-
GPT”. Independently published (2025).

6.	 David Gillette. “Vibe Coding in Python: The Python Program-
mers Guide to AI-Powered Programming (Generative AI Mas-
tery)”. Independently published (2025): 171.

7.	 Addy Osmani. “Vibe Coding The Future of Programming: Le-
veraging Your Experience in the Age of AI-Assisted Coding
(First Early Release)”. O’Reilly Media, Inc. (2025): 250.

8.	 Evgeny Bryndin. “Creation of Multi-purpose Intelligent Mul-
timodal Self-Organizing Safe Robotic Ensembles Agents with
AGI and cognitive control”. COJ Robotics and Artificial Intelli-
gence (COJRA) 3.5 (2024): 1-10.

9.	 Evgeny Bryndin. “Creation of Multimodal Digital Twins with
Reflexive AGI Multilogic and Multisensory”. Research on Intel-
ligent Manufacturing and Assembly 2.1 (2024): 85-93.

10.	 Evgeny Bryndin. “Formation of Motivated Adaptive Artificial
Intelligence for Digital Generation of Information and Tech-
nological Actions”. Research on Intelligent Manufacturing and
Assembly 4.1. (2025): 192-199.

11.	 Evgeny Bryndin. Network Training by Generative AI Assistant
of Personal Adaptive Ethical Semantic and Active Ontology”.
International Journal of Intelligent Information Systems 14.2
(2025): 20-25.

12.	 Addy Osmani. “Beyond Vibe Coding”. Publisher(s): O’Reilly
Media, Inc. (2025).

09

Citation: Evgeny Bryndin. “Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration". Acta
Scientific Computer Sciences 7.7 (2025): 03-09.

Technological Stages of Neural Network AI Generation of System Program Code Based on Modular Neuro Integration

https://crimsonpublishers.com/cojra/fulltext/COJRA.000573.php
https://crimsonpublishers.com/cojra/fulltext/COJRA.000573.php
https://crimsonpublishers.com/cojra/fulltext/COJRA.000573.php
https://crimsonpublishers.com/cojra/fulltext/COJRA.000573.php
https://www.researchgate.net/publication/384009097_Creation_of_multimodal_digital_twins_with_reflexive_AGI_multilogic_and_multisensory
https://www.researchgate.net/publication/384009097_Creation_of_multimodal_digital_twins_with_reflexive_AGI_multilogic_and_multisensory
https://www.researchgate.net/publication/384009097_Creation_of_multimodal_digital_twins_with_reflexive_AGI_multilogic_and_multisensory
https://www.syncsci.com/journal/RIMA/article/view/RIMA.2025.01.006
https://www.syncsci.com/journal/RIMA/article/view/RIMA.2025.01.006
https://www.syncsci.com/journal/RIMA/article/view/RIMA.2025.01.006
https://www.syncsci.com/journal/RIMA/article/view/RIMA.2025.01.006
https://sciencepublishinggroup.com/article/10.11648/j.ijiis.20251402.11
https://sciencepublishinggroup.com/article/10.11648/j.ijiis.20251402.11
https://sciencepublishinggroup.com/article/10.11648/j.ijiis.20251402.11
https://sciencepublishinggroup.com/article/10.11648/j.ijiis.20251402.11

