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   All closed normal movements of a ray of light in the mirror ellipse were classified by reducing them to regular polygons in the circle. 
This reduction leads to a collection of 12 related formulas based on just two integers: 2 and 14. To transition from a normal E-polygon 
(EP) to an arbitrary one, a new parameter t was used (which means, in essence, a normalized time).
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Abstract

Background

Everyone knows what a regular polygon in planimetry is. See 
Figure 1. 

Figure 1: A regular polygon n = 7 and r = 3. (7 - number of sides; 
3 - number of revolutions around the center of the circle).

Let’s take another equivalent definition for it. Let’s imagine that 
our circle is mirrored from the inside and launch a ray of light into 
it. If through n reflections it goes to the initial, then the figure de-
scribed by it is a regular polygon.

Let’s take this definition as a basis and set the following prob-
lem: what a “regular polygons” (further – EP) exists in the ellipse 
and what is their classification.

The seeking of the normal EPs
We will look for the EPs in the ellipses in two stages. First of all, 

we will find all the normal EP, after which we will find all the others.

Definition: normal EPs are those that contain point B among 
their vertices (see Figure 2).

Figure 2: 2a is the 1st order EP (j<yF); 2b is the 2nd order EP 
(j>yF).

As stated in [1], all sequences of rays in an arbitrary ellipse are 
divided into two groups: those that do not intersect the segment 
between the foci (all), and those that intersect (also all). Obviously, 
all EP are divided into the same two large groups.
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We scanned the circle and various ellipses along the angle j (10o 
< j < 80 o) to find the minimum of the expression (Ax-Ax

(n))2 + (Ay-
Ay

(n))2 + (Bx-Bx
(n))2 + (By-By

(n))2. (A and B are the coordinates of the 
initial beam; A(n) and B(n) are the coordinates of the n times reflected 
beam). The found minima (interpreted as the desired EP) turned 
out to be very pronounced and numerous. Our task was to describe 
them all correctly and classify.

Figure 3: 3a is a graph of 1/n (n is the number of EP sides) versus normal angle j in degrees. The graph is a series of decreasing in size 
cluster triangles (CTs) (0, 1, 2, ...) lying in the corresponding zones according to j (j<60o; 45o<j<60o; 45o <j<36o; …) separated by EP with 
r=1. (These EP are called leading for a given cluster triangle and are indicated by a sign “’”). This graph is good because all EPs (regular 
polygons) are located on it along their lines. Each point on the graph (specific EP) has its own unique numbers n (number of sides) and r 
(number of revolutions of EP around the center). Black squares represent EP with n=2p (k=0; k- kind of EP Table 1). Red circles indicate 
EP for odd n and r (n=2p +1; r=2u+1) (k=1). Turquoise triangles with vertices upward are indicated by EP with r=2u and n=4p+1 (k=2). 
Turquoise triangles with vertices down are indicated by EP with r=2u and n=4p+3 (k=3). Figure 3b is a schematic representation of this.

Normal EP in a circle (regular polygons)
Figure 3 shows a plot of 1/n (n is the number of sides of the EP, 

in this case the number of sides of a regular polygon) from j (Fig-
ure 1-2) for all EPs with n < 100. (Hereinafter, until the contrary is 
stated, EP means normal EP, that is, it passing through point “B” in 
Figure 1-2).

Let’s take a closer look at what is the cluster triangle of EP (CT) 
in the graph itself.

Cluster triangle (CT) and its leading EP
The CT cluster triangle consisting of EPs always exists in some 

series; serial number of the series is m (in Figure 3 m = 0, 1, 2…).

We enter the coordinates i and j as shown in Figure 4a and write 
out (from Figure 3) the three CT with m = 1, 2, 3 (ignoring CT with 
m = 0) with its first values  for functions k and n of EP. See Figure 4a.

CT is located on a certain “canvas” which is a well-known Pascal 
[2] triangle, rarefied by numerous “holes”, in places in which EPs 
are absent.
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Figure 4: 4a – CT from Figure 3 for m = 1 and m = 2 m = 3 without its leading EP. 4b – schematic designation of CT in figures.

All holes in all CTs are located equally.

Normal EP of arbitrary order in an arbitrary ellipse
Here are the graphs similar to Figure 3 for 11 different ellipses 

that go with an increase eccentricity. Now, for the first 9 ellipses 
(Figure 5).

It can be seen that Figure 5 and 6 consist (approximately!) of 
the same cluster triangles (CT) as the ideal Figure 3, but with the 
different values (1/n) and (j).

Figure 5: The thick black line indicates the angle yF from Figure 2. To the left of it on each graph it is the movement of rays of the second 
order, to the right is the first. The definition of k for the 1st order is exactly the same as in Figure 3. For motion of the 2nd order the definition 
for the function k is the different (explanations is in the following figure). Double colored vertical lines in the Figure 5 indicate our Super-
Tops. This is Super-Top number 1.… and then for 2 more (Figure 6b, 6c). The site [3,4] shows the same drawings, but in better resolution.

05

Twelve Empirical Formulas for Reducing the Closed Motions of a Ray of Light in a Mirror Ellipse to the Case of a Circle

Citation: A Kornyushkin. “Twelve Empirical Formulas for Reducing the Closed Motions of a Ray of Light in a Mirror Ellipse to the Case of a Circle". Acta 
Scientific Computer Sciences  7.4 (2025): 03-13.



Figure 6: 6a is the definition of the function k of the second order of motion. k=0 – (black square) EP with n=4k+2 and the trajectory of 
the normal EP rays passes through the center of the ellipse; k=1 – (red circle) n=4k; k=2 – (turquoise triangle vertex down), n=4k+2 and 
the rays passes does NOT pass through the center and r=1; k=3 – (turquoise triangle vertex up) all the same as for the case k=2 but r= -1. 
6b and 6c - continuation of the Figure 5a-5i with increased eccentricities. The dimensions of the ellipses are chosen so that the peaks of 

the next Super-Tops fall into the approximate center of the drawing.

Function k (kind of EP) for 1st and 2nd order of motion
Let’s put together all what we said about the function k into one, 

general, table 1.

Recall that the type of movement in the first and second order is 
radically changing. In the first order, these are circular movements 
around the center of the ellipse. In the second order, it is vibrational 
movements around point B.

The whole Cartoon in one drawing. EP symbols
Let’s imagine an ideal Cartoon, frames from which are our 

graphs (1/n) x (ϕ) (but only without restrictions on ϕ and n; ϕ from 

0o to 90o degrees; n – from 3 to ∞), and on the time axis we have the 
eccentricity that will change from e=0 (a=1) to e=1 (a=∞). Let’s try 
to fit everything that we see in the Cartoon, schematically, into one 
drawing. See Figure 7.

Our Cartoon at each time for e>0 (a>1) will consist of two parts 
separated by a vertical line (yF). On the left of this line there will be 
the 2nd order EPs, on the right the 1st order EPs. It is logical that we 
also have two schemes: Figure 7a - for movement of the 1st order; 
Figure 7b - for 2nd order movement.

Let’s start with Figure 7b.
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Our diagram is a sequence of going to infinity of what we call 
Super-Tops. They are numbered by a letter (s). EP located in the 
peaks of Super-Tops bear their designation (s)EP.

The Super-Tops are separated by free-standing EP designated as 
(s)E*.

Each Super-Top falls down both to the right and to the left by the 
series of the cluster triangles (CT).

For those EP that are located to the left of the Super-Tops a small 
letter “e” is used when writing, for those that are located to the 
right – a large letter “E”.

Figure 7: Is our Cartoon represented by one diagram. The figure consists of two parts: 7a is a diagram for the first order of movement; 7b 
is a diagram for the second order of movement. A shaded rectangle shows what exactly hits the screen for a certain “random” frame. The 
letters in the figure: (s) - Super-Tops number; m - number of CT in the series; i and j are the coordinates of the particular EP in CT (“Pas-

cal's triangle”). Further explanations in the text...

Order of the 
motions

k (kind) 
of EP

Number of 
sides (n)

Number of revolutions 
around the center of 

the ellipse

Type of trans-
formation at an 

arbitrary EP

Number and se-
quence of colored 

markers

Example (cartoon)

1

0  2u 1, (Type I) 2; Red, Blue [5], 0T1
0

1  2u+1 2p+1 2, (Type II) 4; Red, Blue, 
Purple, Green

[6] 1T’,

2  4u+1 2p [22]

3  4u+3 2p [23]

2

0  4u+2 - 3, (Type III) 3; Red, Blue, Red, 
Green

[7] (1)
2E’, [17,18]

1  4u 0 4, (Type IV) 3; Green, Red, Blue, 
Red

[8] (1)
3E’, [11,13,16]

2  4u+2 1 5, (Type V) 3; Red, Green, Red, 
Blue

[14,15,20]

3  4u+2 -1 [9] (1)
1Ec, [12,19,21]

Table 1: Our designations for function k for the 1st and 2nd orders of motion. In bold are those markers where their EP is in a 
shimmering phase.
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Figure 8: Illustration of formulae (9), (10), (11).

The corresponding CT series is written as T (1st order) and (s)E 
or (s)e (2nd order).

The cluster triangles (CTs) themselves are written as mT (1st or-
der) and (s)

mE or (s)
me (2nd order). (“s” is the Super-Tops number, “m” 

is the cluster number in the series. s, m=1, 2 …).

The EP themselves are written as mTi
j (1st order) and (s)

mE or (s)

me (s) (2nd order); where i and j are the coordinates in “Pascal’s tri-
angle” (Figure 4a, 7).

The leading EP in each CT are indicated by a dash. mT’ (1st order) 
and (s)

mE’ or (s)
me’ (2nd order).

EP in each cluster (CT) having coordinates i,j = 0 have the ad-
ditional name mTc (=mT0

0; 1st order) and (s)
mEc or (s)

mec (=(s)
mE0

0 or =(s)

me0
0; 2nd order).

(We will use 2 types of designations of our objects: using lower 
and upper registers and without them, in a string. In this case, our 
designations are enclosed in brackets different for different catego-
ries: “[]” - for the series of CT, “< >” - for CT themselves, “()” - for EP. 
Examples: (2)

3E ≡ <2,3,E>, (3)EP ≡ (3,EP), (3)
1e2

2 ≡ (3,1,e,2,2)). 

We declare that no other normal EP exists! 

We give the following formulas from Figure 5, 6, 7. 
( ) * ( ) *( ) 2; ( ) 4 2;s sk E n E s= = +  ------- (1)
( ) ( )( ) 1; ( ) 4 ;s P s Pk E n E s= =  -------- (2)

( ') %2; ( ') 2 ;m mk T m n T m= = + ----------------(3)
( ) ( ) ( ) ( )( ') %2; ( ') 4 ; 2 4( 1);s s s s
m mk E m n E s m s= = + ∆ ∆ = + − - - 

(4)
( ) ( ) ( ) ( )( ') %2; ( ') 4 ; 14 4( 1);s s s s
m mk e m n e s m sδ δ= = + = + −  --- (5)

( ) ( ) ( ) ( )
1( ) 2 %2; ( ) ( ') ( ');s c s c s s

m m m mk E m n E n E n E+= + = +  -------- (6)
( ) ( ) ( ) ( )

1( ) 2 %2; ( ) ( ') ( ');s c s c s s
m m m mk e m n e n e n e+= + = +  ---------- 

(7)

1( ) 2 %2; ( ) ( ') ( ');c c
m m m mk T m n T n T n T+= + = +  (8)

It can be seen that all formulas are based, in fact, on two inte-
gers 2 (formula 4) and 14 (formula 5).

Formula n(EP) from i and j
Figure 8 shows functions k and n for i,j < 4, and CT equal to 

<1,1,E>, <1,1,e>, <1,2,E>, <1,2,e>, <1,3,e>, <2,1,E>, <2,1,e>, <2,2,E>, 
<2,2,e>, <2,3,E>, <2,3,e>, <3,1,E>, <3,1,e>, <3,2,E>, <3,2,e>, <3,3,E>, 
<3,3,e>; (1

1E, 1
1e, 1

2E …).
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From Figure 8 follows…

1( ) ( ) ( ')* ( ')*i c
m j m m mn T n T n T i n T j+= + +  ------ (9)
( ) ( ) ( ) ( )

1( ) ( ) ( ')* ( ')*s i s c s s
m j m m mn E n E n E i n E j+= + +  ------- (10)
( ) ( ) ( ) ( )

1( ) ( ) ( ')* ( ')*s i s c s s
m j m m mn e n e n e i n e j+= + + ------------- (11) 

We give the last 12 formula: for any (s) m, i, j true
( ) ( )( ) ( ) ( )i s i s i

m j m j m jk T k E k e= =  -------- (12)

Figure 9 illustrates this for the case s=1, m=1, i+j<8.

Figure 9: Illustration of the formula 12.

“Birth” and “death” of EP
In terms of EP “birth” (appearance) in the Cartoon and EP 

“death” in the Cartoon, all EPs are divided into three categories 
(shown in the diagram (Figure 7) with curly brackets and numbers 
1, 2, 3).

At the very beginning (e=0), all first-order EPs are present, and 
there are no second-order EPs.

Immediately after the start of the Cartoon, in the second order, 
a small interval will appear on the screen (in the diagram, from the 
left end), which will immediately begin to move away from the bor-
der (yF) in the direction to the left (we did not observe this, but it is 
difficult to imagine some other behavior).

In the first order, at the same time, part of the CT 0T will begin to 
gradually disappear, which at infinity (at e=1) will disappear com-
pletely.

Thus, all CT are divided into three groups on the issue of “birth 
and death”.

1st group (“immortals”) – time of birth e=0, time of death e=1. It 
is all EPs contained in CT= 1T, 2T, 3T…

2nd group (“immortals only if time is run the other way”) – time 
of birth e=0, time of death e=eD. It is EPs contained in CT=0T.

3rd group (“mortals”) – time of birth e=eB (which is strictly 
greater than 0) and time of death e=eD (which is strictly less than 
1). All 2nd- order EPs belong to this group. 

All EPs from birth to death behave well and correctly, clearly 
taking their place in their cluster. What do we mean?

Empirically established the following fact! (? Was not strictly 
checked on the computer!).

Let given EP= (s)
mXi

j (X=E or e or T). je((s)
mXi

j) function j for an 
ellipse with eccentricity e. And let for some j1, j2, and eB<e<eD je((s)

mXi
j1) > je((s)

mXi
j2).

Then it is argued that then this inequality will be true for all 
eB<e<eD (of course, when both EPs are present in the frame)!

The same statement is true, as well, for the inequality regarding 
i: je((s)

mXi1
j) > je((s)

mXi2
j).

Change from Normal EP to General EP
To change from normal EP to general EP we must add a new 

parameter t to normal EP. 

“t“ – is a real number from 0 to 1. (Basically, it’s just - TIME, 
the normalized frame number in the cartoon. Now we are talking 
about another “cartoon”. We have already completed everything 
with the main Cartoon).
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Figure 10: T – is the number of frames from one color marker to another.

Let’s take any normal EP and choose a small offset to the begin-
ning of the beam (dA) and to the end of the beam (dB) (replace 
the original beam AB with A’B’). Then we arrange the markers on 
the ellipse (see below), and launch our new “cartoon with a small 
letter”. 

First frame: normal E=EP. Second frame: EP after n-reflections 
- R(E). The third frame is EP R(R(E)) and so on... Rk(E). (In essence, 
you need to make k*n reflections, but draw only the last n rays). 
See [5,22]. And our cartoon will consistently describe all general 
EPs tied to this normal! Moreover, it will do this in the same time 
from one color marker to the next. See Figure 10.

Which dA and dB offsets do you need to select for this? Our an-
swer is ANY. The main thing is that they are small. But the problem 
is that my computer cannot make them very small, the program 
begins to work wrong. But in fact, this is NOT NECESSARY! Moder-
ate accuracy ~ 1000 reflections per full revolution (or ~ 100 reflec-
tions per passage of one marker) is quite suitable.

Fig,10 shows how the difference between T8 and T1 (E=0T1
0, n=8; 

r=3) changes at completely different initial offsets dA and dB. It can 
be seen that the difference is not significant. Even better reduces 
this difference our voluntaristic choice! For 1st order EP we take 
dA = dB. For 2nd order EP some dA and dB = 0. The value of dA and 
dB is just selected to provide ~ 500-1000 reflections per full cycle.

One last thing! Really new will be only EP from the beginning 
to the first marker! And all the other EPs are their different reflec-
tions.

Let’s talk about what markers and how we need to place them?

General 1st order EP (Types I, II)
The four kinds of normal 1st order EPs (k=0..3) are divided into 

two types of possible transformations: Type I (k=0) and Type II 
(k=1..3). Figure 11a and Figure 11b.

The current position of point B is called the control marker. Let 
t be the “time” (frame number); u=[t/T], t= {t/T} (where T is the 

Figure 11: 11a – EP E=0T10 (a=1.165; j=33.38 o; n=8; r=3; k=0); 11b – EP E=1T’ (a=1.365; j=45.44o; n=3; r=1; k=0). X (E) and Y (E) are 
the symmetrical EPs about the X and Y axes.
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Figure 12: 12a – EP E=(1)2E’ (a=1.265; j=30.38 o; n=6; k=0; Figure 5b); 12b – EP E=(1)3E’ (a=1.165; j=27.18o; n=8; k=1; Figure 5a); 12c 
– EP E=(1)1Ec (a=1.565; j=46.12o; n=10; r=-1).

time of the control marker passage from one color marker to the 
next. Then the EP at time t is denoted by Eu(t).

In the next two chapters we will tell you how to place markers 
and what colors they have.

Type I
See [5]. (A control marker (the current position of point B) is 

marked in the cartoon with a moving black circle. Unlike stationary, 
colored ones).

The vertices of a normal EP are marked in red. This EP is sym-
metrical about X and Y. After time T this EP passes into a new EP 
with the same symmetries. Its vertices are marked in blue. Thus, 
the sequence of markers through which the control marker will 
pass: red-blue-red-blue... and so on.

Type I EP will always maintain central symmetry. On Figure 11a 
the control marker has made a complete revolution in 16 cycles of 
T. 16=n*2.

Type II
See [6]. 

The vertices of a normal EP are marked in red. The vertices of 
its X-symmetrical version are marked in purple. Through after T 
reflections, the EP becomes X-symmetric. Color of these vertices 
is blue. Y-symmetric vertices to it will be painted green. Then the 
sequence of markers passed by control marker going around the 
center will be red-blue-purple-green ... and again red-blue-purple-
green ... and so on. 

On Figure 12b the control marker has made a complete revolu-
tion in 12 cycles of T. 12=n*2.

The time T when moving from one marker to another will be the 
same (as T tends to infinity). In addition, as shown in the figure, all 
subsequent EPs Eu(t) u>0, are expressed exclusively from the EP 
E0(t) by reflections relative to the X axis or relative to the Y axis. 
That is, this interval alone is enough to describe all general EP.

General 2nd order EP (Types III, IV, V)
In the second order, we will have three changes relative to the 

first.

First, the control marker will no longer make a complete revolu-
tion around the center of the ellipse, but will oscillate around the 
starting point B.

Secondly, in its transformation, the EP will pass through the 
so-called “flickering” phases, when the vertices of the EP partially 
coincide and the number of sides is actually halved. In Table 1, in 
the column “Number and sequence of markers”, the color of the 
marker, when this happens, is given in bold.

Thirdly, a local time reversal operation (E(t)=>E(1-t)) will be 
added to the reflections of the EP relative to the axis X and Y (X (E), 
Y (E)). Let’s number the passage of color markers with a control 
marker. Then for any even pass this will be the local time reversal 
of the previous pass plus, may be, reflection along the X or Y axis. 
See Figure 12.
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The four kinds of normal 2nd order EP (k=0..3) are divided into 
three types of possible transformations: Type III (k=0), Type IV 
(k=1) and Type V (k=2,3). See Figure 12.

Type III
See [7].

The normal EP is in an ordinary (not “flickering”) phase. It has X 
and Y-symmetry. Mark its vertices with a red marker. At time T, the 
EP will go into a “flickering” X-symmetric phase. Its vertices will be 
marked with a blue marker. The vertices of the EP Y-symmetrical 
to it will be marked green. Then the sequence of markers through 
which the control marker passes is red-blue-red-green- red-blue-
red-green... and so on. After counting n/2 (n/2=3; Figure 13a) 
markers, the control marker will reach the maximum on the Y-axis 
and move back 

Type IV
See [8].

The normal EP is in a “flickering” phase. It has the Y-symmetry. 
Mark its vertices with a green marker. Vertices of X-symmetric EP 
to it marked with a blue marker. At time T, the EP will have X and 
Y symmetry. Its vertices will be marked with a red marker. Then 
the sequence of markers through which the control marker passes 
is green-red-blue-red- green-red-blue-red... and so on. After count-
ing n/2 (n/2=4; Figure 13b) markers, the control marker will reach 
the maximum on the Y-axis and move back. This will not affect the 
sequence of markers in any way.

Type V
See [9].

The normal EP is in an ordinary phase. It has X and Y-symmetry. 
Mark its vertices with a red marker. At time T, the EP will go into 
a “flickering” central-symmetric phase. Its vertices will be marked 
with a green marker. The vertices of the EP X-symmetrical (or Y-
symmetrical, what is the same) to it will be marked blue. Then the 
sequence of markers through which the control marker passes is 
red-green-red-blue- red-green-red-blue... and so on. After counting 
n/2 (n/2=5; Figure 12c) markers, the control marker will reach the 
maximum on the Y-axis and move back.

The expression of Eu(t) through E0(t) (u>0) is shown in the Fig-
ure 12.

Let us summarize: in all five cases of types (Type I, Type II, Type 
III, Type IV, Type V) all EPs are the corresponding reflections with 
respect to X, Y and time of E0(t).

Conclusion 
Although we do not strictly prove formulas (1)-(12), their cor-

rectness is beyond doubt. Anyone can download the program [22] 
and, according to the instructions, easily draw up a graph similar 
to Figure 5-6 for any ellipse and check the correctness of formulas 
(1)-(12) or write down a standard “confirmation” cartoon similar 
to [5-24] (markers are placed automatically) and make sure that 
all the transition times from one color marker to the next are equal 
to each other. 
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3. (9 ellipses).

4. (2 ellipses).

5. 0T10=(0,T,1,0) k=0.

6. 1T’=(1,T’) k=1.

7. (1)2E’=(1,2,E’) k=0.

8. (1)3E’=(1,3,E’) k=1.

9. (1)1Ec=(1,1,E,0,0) k=3.

10. (Type I-V).

11. (1)3E’=(1,3,E’) k=1.

12. (1)1Ec =(1,1,E,0,0) k=3.

13. (1)EP=(1,E’) k=1.

14. (1)E*=(1,E*) k=2.

15. (2)E*=(2,E*) k=2.

16. (2)EP=(2,E’) k=1.
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17. (1)2E’=(1,2,E’) k=0.

18. (1) 2e’=(1,2,e’) k=0.

19. (2) 1ec=(2,1,e,0,0) k=3.

20. 2Tc=(2,T,0,0) k=1.

21. 1Tc=(1,T,0,0) k=3.

22. (1)1E34=(1,1,E,3,4) k=3.

23. (Program E-poly.exe).

24. Find regular sequences in circle.

25. Find regular sequences in ellipse (a=1.165).
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