
Acta Scientific COMPUTER SCIENCES

 Volume 7 Issue 1 April 2025

Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study

Case Study

A Jain1*, Padmini S2 and S Srivastava1

1Electronics Division, Bhabha Atomic Research Centre, Mumbai, India
2Electronics Division, Bhabha Atomic Research Centre (Ret.), Mumbai, India
*Corresponding Author: A Jain, Electronics Division, Bhabha Atomic Research
Centre, Mumbai, India.

Received: February 14, 2025

Published: March 28, 2025
© All rights are reserved by A Jain., et al.

Software redesign [1] involves the thorough evaluation, analy-
sis, and modification of an existing software system to transform it
into a new form, followed by the implementation of the new form.
The goal of software redesign is to provide more robust, scal-
able, fault tolerant, efficient software while preserving its basic
functionalities. While the re-development process is tedious and
expensive, it is compensated by improvement in software perfor-
mance, reduction in maintenance efforts and ease of troubleshoot-
ing problems.

In this paper, we describe design analysis of existing software
of centralized console server of MACE Telescope, which we used
as test case. Initially, the software’s design appeared reasonable,
but upon investigating the feasibility of implementing new fea-
tures, several significant flexibility-related challenges were un-
covered, necessitating adjustments. The issues were analyzed to
observe their impact on the flexibility of the software. In the pro-
cess of solving these issues, we discovered usage of various design
principles and design patterns [2] not only resolves these issues,
but also makes design scalable and robust, reducing future main-
tenance effort.

Software responsibilities
MACE is a mega science experiment to study the Cherenkov

light associated with an extensive air shower, developed as a re-
sult of a primary γ-ray emission from various cosmic, galactic
and extra galactic astrophysical sources [3]. MACE telescope with
21m diameter and nearly 180-ton weight is a distributed system
consisting of several subsystems with their designated respon-
sibilities. The major subsystems include - high resolution imag-
ing camera for recognition and acquisition of Cherenkov events,
control system for moving the telescope towards specific sources
at proper orientation, sky monitoring system for quantifying the
sky transparency level and checking the tracking accuracy, mir-
ror alignment system for focusing the Cherenkov light onto the

camera, weather system for monitoring of wind speed and weather
parameters, calibration system for relative gain calibration of im-
aging camera and data archiver for saving observation data. These
subsystems are controlled by Central Camera Controller (CCC) [5],
Telescope Control Unit (TCU) [6], Sky Monitoring System (SkMS),
Automatic Mirror Control System (AMCS) [7], Weather Monitoring
System (WMS), LED Calibration System (LCS), Data Archiving Sys-
tem (DArS) [8] respectively.

MACE Console server acts as centralized server for controlling
each of these subsystems by issuing commands to all of them. Each
of the subsystem controller accepts commands from centralized
MACE Console Server, interprets it and perform desired actions
corresponding to the received command. MACE operator console
(OC), which acts as a client to MACE console server, is responsible
for overall control, monitoring and error handling of the telescope.
It provides user the facility to schedule, conduct and monitor ob-
servations.

To ensure safety of overall system, all functionally diverse sub-
systems within the MACE telescope exclusively function within
well-defined and recognized states. The MACE Console server man-
ages a state machine for each subsystem based on their respective
functionalities. When a command is received from the MACE OC,
it undergoes validation within the appropriate state machine to
ensure its safe execution within the current state of the subsys-
tem before it is transmitted to the intended subsystem controller
as shown in Figure 1. MACE Console server also provides connec-
tion status of all subsystems to MACE OC periodically. MACE OC
maintains the overall state of the MACE telescope by coordinating
among the subsystems during the observation runs.

Original design
Original MACE console server software was designed using

object-oriented methodologies. Each subsystem was defined as an

Citation: A Jain., et al. “Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study". Acta Scientific Computer Sciences
7.1 (2025): 37-43.

Figure 1: Block Diagram [9].

object with attributes and properties. The Subsystem object in-
teracted with the actual subsystem controller for executing differ-
ent commands and receiving the data. Each subsystem object had
an associated Finite State Machine (FSM) for validation of com-
mands. An elaborate FSM [12], consisting of all possible process
states with all possible transitions as per subsystem functional-
ity, was implemented using a third-party library. These FSMs [10]
addressed both normal and abnormal conditions of the subsys-
tems. Each subsystem had its well-defined parameters. The FSM
also maintained information of connection state of all subsystems
which is periodically communicated to MACE OC.

Planned extensions
MACE telescope is commissioned at Hanle (32.80 N, 78.90 E,

4270m asl) in the Ladakh region of North India. Elevated and less
habituated remote site improves sensitivity and offers low back-
ground urban light with provision of approximately 260 spectro-
scopic nights annually, ensuring a consistent and evenly distributed
sky coverage for observing celestial sources. The remote location
and extreme weather conditions of the site impose constraints of
minimum number of operational staff and lesser working period
in a year, creating a lot of challenges for engineering during design,
commissioning, testing and operation. The requirement of obser-
vations to be performed during dark and clear nights constrains
configurations, troubleshooting and maintenance related activi-
ties, creating a strong need of remote operation capability.

The remote operation occurs over a shared satellite network
with a restricted bandwidth allocation of 128 kbps.

Therefore, it becomes crucial to optimize communication mech-
anisms to prevent any disruptions or delays in the transmission
of data to and from the remote OC. Security concerns forbid mul-

ticast mechanism in satellite communications, which enforces all
the communications to be unicast. It was also necessary to address
the requirement of multiple OCs, co-existing at the same time, and
coordinating control and monitoring tasks, enabling multiple re-
searchers from diverse geographic locations to conduct or observe
the experiment simultaneously.

Need of redesign
•	 Delays in communication mechanism: Optimized commu-

nication mechanism requires fast response time, robust con-
nection management and earliest detection of connection loss
followed by quick re-connection. The existing software didn’t
provide the early and reliable detection of connection losses,
causing delay in communication chain.

•	 Elaborate third party state machine: Each subsystem object
had an elaborate state machine, evaluating every possible con-
dition in all the states, introducing delay in command process-
ing. This reduced the overall responsiveness of the system.
State machines were created using a third-party tool, which
provided FSM of each subsystem in the form of a library. This
made the future development and troubleshooting difficult.

•	 Serialized processing: The original software serialized re-
ceiving commands from OC client, exchanging command and
their respective responses from various subsystems, sending
back the response to OCs and providing connection status to
all OC clients. Functionality of connection management and
status update gets blocked while a command is getting execut-
ed. To provide the facility of multiple co-existing OC’s, server
should be capable of receiving commands from one of the cli-
ents and sending status to all of them in unicast manner main-
taining synchronization. Also, Connection management with
multiple OC clients as a server and a number of subsystems as

38

Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study

Citation: A Jain., et al. “Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study". Acta Scientific Computer Sciences
7.1 (2025): 37-43.

clients should be accomplished concurrently. In case of detec-
tion of connection loss at one of the interfaces, it should be
possible to reestablish connection while the other interface
is doing data exchange. For instance, connection loss with
camera should not interrupt communication with OC or TCU.
While communication with OC or TCU is taking place, detec-
tion and recovery of connection with camera should happen
concurrently without any interruption to the communication
in progress.

•	 Prohibited Multi-cast Mechanism: In the original software,
connection status of all the subsystems is periodically multi-
casted to OC, which is forbidden in satellite communication
used for remote operation. Also, the mechanism of connec-
tion status update is tightly coupled with command response
mechanism. It was required to change the existing scheme as
well as provide the periodic status update to all the clients in
unicast manner in multiple OC environment.

•	 Data Coupling: In the original software, parameter server
used to maintain a global copy of shared parameters result-
ing in data coupling. The synchronization mechanism was
required for any change in these parameters inducing un-
necessary software bottlenecks. This needless blocking time
reduced the overall responsiveness of the software. The use
of global shared data impacted any future developments and
reduced its maintainability.

•	 Poor Design: In the original software it was not possible to
test each of the software functionality independently by keep-

ing a stub for each of the interface. The design was not modu-
lar which increased efforts involved in software testing and
maintenance.

New design
Design concepts

Well established software design principles have been adopted
while designing the new software for MACE console server. Follow-
ing the single responsibility principle, each module is designed by
assigning single well-defined responsibility. Inter component com-
munication is conducted through events and notifications to re-
duce coupling. Each of the subsystem State Machine is replaceable
by the STM base class following Liskov substitution principles. The
modules use interfaces to achieve Open-closed principle. These
Interfaces are segregated so that none of the class is forced to de-
pend upon interfaces that it doesn’t use. Usage of SOLID principles
[2] has helped in reducing side effects and made the design more
stable and scalable. Multi-threaded programming architecture has
been adopted to achieve maximum efficiency. Processing of com-
mands at various stages, preparing subsystem connection status
and communication with various subsystems and multiple OC cli-
ents are done concurrently.

Software architecture

MACE Console Server has been designed in a layered architec-
ture comprising of dedicated packages [11] with reusable mod-
ules and classes. The important components of the software are
described below:

Figure 2: Architecture Diagram.

39

Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study

Citation: A Jain., et al. “Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study". Acta Scientific Computer Sciences
7.1 (2025): 37-43.

Communication package
This package contains TCP server, TCP client, Service IO Handler

modules and classes for IP Address, IP End Point, IP END Point Ar-
ray and various data structures like pipe and collection of connec-
tion handles.

TCP server
TCP Server module manages the communication with multiple

MACE OC clients by maintaining a collection of connection handles
and their connection status. The command received from one of the
clients is dispatched to the command parser module. After receiv-
ing notification of response event, the response to the command is
sent to all the OC clients. It also sends connection status of all the
subsystems to all OC clients, on receiving notification from periodic
task manager. TCP server runs on a separate thread, which is not
blocked on IO. The communication mechanism with multiple OC
clients is made non-blocking by using SELECT function to multiplex
over the TCP sockets for getting the ready descriptor [12].

TCP client
MACE console server maintains a TCP client for communication

with each of the subsystem controller. Each TCP Client has a TCP
Connector which manages the connection with the subsystem con-
troller. As a command is validated by state machine it is dispatched
to corresponding TCP Client for sending it to designated subsystem
controller. The response received from the subsystem controller is
directed back to the corresponding state machine. Each TCP client
also provides connection status with its subsystem controller to
TCP sever on being notified by periodic task manager. TCP Clients
run on a separate thread and uses non-blocking communication
mechanism for performing IO.

Communication modules are based on Reactor Design Pattern
[12] for accomplishing A robust and optimized communication
mechanism, achieved through a single-threaded event loop that
awaits resource-generating events and subsequently dispatching
them to their respective handlers and callbacks. These handlers/

Figure 3: Reactor Pattern [4].

callbacks utilize a worker thread pool for actual execution of work
instead of using a thread per client, which remains blocked most of
the time waiting for network IO.

The mechanism instantly detects loss of connection eliminating
the wait for a read or write. Every disconnection is quickly followed
by a reconnection; making communication mechanism robust
and efficient. Each unused connection descriptor is immediately
released eliminating the possibility of any connection descriptor
leaks.

Packet based communication mechanism is used, where each
packet being transmitted from source to destination is assigned
a header with packet id, packet length, checksum and payload.
Unique packet id helps in discarding redundant packets received
over dual redundant communication links provided for some of the
subsystems.

State Machine (STM) package
This package contains an abstract STM factory, an STM factory

and state machine manager. It contains classes for states, events,
handlers, transitions and necessary data structures for maps and
tables for creation of state machines.

For each of the subsystem an STM [14] is created consisting of

three distinct states, connected via six state transitions as shown
in table 1. These abstract level state machines maintain the con-
nection and current state of subsystems for regulating issue of
command to the subsystem. Camera state machine is described in
Figure 4, which replaces the complex and detailed state machine in
the original software as described in [10].

The State machine Manager maintains all state machines and

their maps. Once a command is received from TCP server, it parses
the command id through the maps to identify the destined subsys-
tem and directs it to the corresponding state machine.

40

Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study

Citation: A Jain., et al. “Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study". Acta Scientific Computer Sciences
7.1 (2025): 37-43.

Figure 4: CAMERA Subsystem State Machine [4].

STM States Connected Disconnected Response Awaited
STM Events Single Events Connect Disconnect Timeout

Range Events Issue Command Receive Response
STM Handler Connect Disconnect Request Response Timeout

Table 1: State Machine Elements.

Since, behavioral functionality of subsystems changes along
with their states, the State pattern is employed to establish a struc-
tured and loosely coupled approach to accomplish this. It is real-
ized through the implementation of the Context and State, which
permits the behavior to be dynamically adjusted depending on the
current state at runtime. Hence, each of these state machines is cre-
ated using state machine design pattern [14]. The implementation
of state machines removes dependency on any other third-party
tool making it easier to debug and integrate.

Since, we need separate state machines for each of the subsys-
tems based on a similar template, factory design pattern is used for
creation of various state machine instances.

Periodic task manager
It is a timer-based module, which manages the periodic activi-

ties in the software. This module runs on a separate thread and fa-
cilitates execution of periodic task of all the modules by providing
them timer notification periodically.

Subsystem status manager
This module collates connection status of all subsystems and

provides the information to all MACE OC clients on receiving notifi-
cation from periodic task manager.

Command parser module
This module is responsible for parsing the command received

from TCP server and passing it on to corresponding subsystem
state machine.

Multi thread package
This Package comprises of classes and interfaces, which encap-

sulate OS thread implementation. This module is used for efficient
management of threads by reducing overhead of thread creation.
It creates and keeps some predefined number of worker thread in
a thread pool and provides an interface to retrieve them whenever
required. This reduces the need for dynamic thread creation dur-
ing run time thereby optimizing unnecessary delays.

Event dispatcher
The Event Dispatcher facilitates application components to

communicate with each other by dispatching events and listening
to them. When an event is dispatched via dispatcher, it notifies all
listeners registered with that event. It allows encapsulation of data
as event arguments with notifier to be passed on to listener. It runs
on a separate thread.

Figure 5 demonstrate full sequence of command processing
from MACE OC to subsystem.

41

Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study

Citation: A Jain., et al. “Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study". Acta Scientific Computer Sciences
7.1 (2025): 37-43.

Figure 5: Sequence Diagram of Command execution.

Enhancements and benefit by new design
The enhancements in new software design has played a pivotal

role in attaining peak performance. The benefits gained by incorpo-
rating various design changes are described below:

Improves scalability and adaptability
New MACE Console server design is capable of accepting mul-

tiple OC clients from different geographical locations. Decoupling of
command interface and subsystem status update module provides
flexibility of assigning different roles to geographically separated
OCs, while continuing to send subsystem connection status peri-
odically.

Based on open close principle the design is adaptive to addition

of any new subsystem by simply adding an instance of TCP client
for communication and creating another state machine by state
machine factory.

Improved performance

Multithreaded architecture followed in the new design provides
concurrent execution of tasks enhancing run time performance.
The separation of the command and status interfaces from the OC
creates space for simultaneous processing of commands and status
updates. Non-blocking communication mechanism with multiple
OCs and various subsystems provides faster network IO reducing
overall response time, which is a critical requirement for remote
operation. Abstraction of state machines reduces command-pro-
cessing delays incorporated at console sever. Facility of shared pool
of pre-allocated worker threads removes thread creation latency
and readily provides worker thread for delegation of jobs.

Increased robustness
In the new design usage of Select pattern ensures quick detec-

tion of connection loss, followed by quick reconnection without in-
corporating significant delay in communication channel.

Increased modularity
Modular design of MACE Console server makes each of its in-

dependently developed general purpose component reusable in a
variety of applications. Separation of communication modules for
server and clients makes design modular and decouples communi-
cation with subsystems and OCs.

Improved testability and maintainability
Each of the module of newly designed console server is tested

independently. All the state machines and subsystem clients are
tested with individual subsystems keeping stub for other subsys-
tems. Modular design has improved the testability of the system, as
individual module undergone any kind of update can be indepen-
dently tested before integrating with the system. Modular design
of MACE Console server has also increased the maintainability as
each of package can be independently modified, redesigned and ex-
tended without affecting other packages.

Decreased personal dependency
Usage of well-established design patterns [16] has helped in

making design generalized. Modular design, usage of intuitive
naming convention, dividing responsibility among classes and
packages-based development has increased the readability of the
code and is helpful in reducing dependency at developer level.

42

Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study

Citation: A Jain., et al. “Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study". Acta Scientific Computer Sciences
7.1 (2025): 37-43.

Conclusion
Redesign proves to be a valuable instrument for transforming

outdated, obsolete systems into more efficient and streamlined
ones. Its applications extend to enhancing flexibility, maintainabil-
ity, robustness, modularity, performance, and testability while also
reducing reliance on specific individuals. The comprehensive eluci-
dation and rationale behind the changes, based on design principles
as outlined in this paper, can prove beneficial when undertaking a
redesign of other software systems in need of enhanced flexibility
and optimization. These modifications can additionally function as
examples for preparing software systems to accommodate future
requirements. The discussed issues are common; appear in various
scenarios, therefore described solutions can be employed in similar
situations.

Software developers frequently find themselves inheriting
existing software systems, making the issues outlined in this pa-
per quite common. Consequently, this analysis can be valuable to
programmers facing similar scenarios. Furthermore, by following
recommended design patterns [15] for commonly occurring soft-
ware scenarios during the initial development phase, it’s possible
to proactively prevent such issues. Recognizing and avoiding typi-
cal design challenges mentioned earlier, whether in the design or
maintenance phase, has the potential not only to lower mainte-
nance expenses but also to enhance system efficiency.

Bibliography
1. Fowler M., et al. “Refactoring–improving the design of existing

code”. (2002).

2. Robert C Martin. “Design Principles and Design Patterns”.
[www.objectmentor.com], (2000).

3. M Sharma., et al. “Sensitivity estimate of the MACE gamma ray
telescope”. Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 851 (2017): 125-131.

4. A Jain., et al. “MACE Telescope: Observation, Data Acquisition
and Monitoring”. BARC Newsletter: Universe of MACE Tele-
scope at Hanle 383 (2022).

5. S Srivastava., et al. “MACE camera controller embedded soft-
ware: Redesign for robustness and maintainability”. ELSEVIER
Publications, Astronomy and Computing 30 (2020).

6. P Kurup., et al. “MACE Telescope Servo Controller Design”. Na-
tional Symposium on Nuclear Instrumentation (2010).

7. P Kurup., et al. “Active Mirror Alignment Control System for
the MACE Telescope”. National Symposium on Nuclear Instru-
mentation (2010).

8. D Sarkar., et al. “A Generic High Data Rate Archiving Software
Solution: In Context of an Astronomy Experiment”. Acta Scien-
tific Computer Sciences 3.7 (2021): 72-82.

9. A Jain., et al. “Autonomous Observation, Control, Data Acquisi-
tion and Monitoring of MACE Telescope”. Astroparticle Physics
157 (2023): 102922.

10. S Bharade., et al. “State Based Control Design of MACE Console
System”. National Symposium on Nuclear Instrumentation
(2010).

11. Package-Based Software Development, Proceedings of the
29th EUROMICRO Conference “New Waves in System Ar-
chitecture” (EUROMICRO’03), IEEE, Merijn de Jonge, 1089-
6503/03, (2003).

12. “The Reactor: An Object-Oriented Interface for Event-Driven
UNIX I/O Multiplexing (Part 1 of 2)”. D. C. Schmidt, C++ Report
5 (1993).

13. M Ackroyd. “Object-oriented design of a finite State machine”.
Journal of Object Oriented Programming (1995).

14. Shalyto N., et al. “State machine design pattern”. Proc. of the 4th
International Conference on. NET Technologies (2006): 51-57.

15. E Gamma., et al. “Design Patterns: Elements of Object-Orient-
ed Software”. Addison Wesley, (1995).

16. Armeet Singh and Syed Imtiyaz Hassan. “Effect of SOLID De-
sign Principles on Quality of Software: An Empirical Assess-
ment”. International Journal of Scientific and Engineering Re-
search 6.4 (2015): 1321.

43

Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study

Citation: A Jain., et al. “Software Redesign for Better Adaptation, Robustness, Performance and Modularity: Case Study". Acta Scientific Computer Sciences
7.1 (2025): 37-43.

https://actascientific.com/ASCS/ASCS-03-0144.php
https://actascientific.com/ASCS/ASCS-03-0144.php
https://actascientific.com/ASCS/ASCS-03-0144.php
https://www.sciencedirect.com/science/article/abs/pii/S0927650523001081
https://www.sciencedirect.com/science/article/abs/pii/S0927650523001081
https://www.sciencedirect.com/science/article/abs/pii/S0927650523001081
https://www.ijser.org/researchpaper/Effect-of-SOLID-Design-Principles-on-Quality-of-Software-An-Empirical-Assessment.pdf
https://www.ijser.org/researchpaper/Effect-of-SOLID-Design-Principles-on-Quality-of-Software-An-Empirical-Assessment.pdf
https://www.ijser.org/researchpaper/Effect-of-SOLID-Design-Principles-on-Quality-of-Software-An-Empirical-Assessment.pdf
https://www.ijser.org/researchpaper/Effect-of-SOLID-Design-Principles-on-Quality-of-Software-An-Empirical-Assessment.pdf

	_GoBack

