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Abstract

Image classification has traditionally relied on Convolutional Neural Networks (CNNs) for their ability to extract visual features, 
recognize and learn patterns. However, the emergence of Vision Transformers (ViTs) as an alternative approach, inspired by Trans-
formers in language tasks, brings the potential for capturing global image relationships and achieving competitive performance, 
interpretability, and scalability. The field of quantum computing has shown great promise, heralding a new era in computation and 
problem-solving. By harnessing the principles of quantum mechanics, quantum computers offer the potential to perform calculations 
at a scale and speed that surpass classical computers. This paper introduces QuViT, a quantum-accelerated vision transformer. With 
a novel q-input engine, q-encoder, and q-decoder, the proposed QuViT model follows a hybrid- approach that provides a promising 
avenue for building a quantum vision transformer that can handle yottabyte- scale image classification tasks with high accuracy, ef-
ficiency and paradigm shifting performance.
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Introduction

The origins of quantum computing [1] can be traced back to 
the early 1980s, when physicist Richard Feynman first proposed 
the idea of using quantum mechanics to perform computation. The 
idea was further developed by mathematician Peter Shor in the 
1990s, who demonstrated that a quantum computer could be used 
to factor large numbers exponentially faster than a classical com-
puter. Qubits, which are analogous to classical bits but can exist 
in multiple states simultaneously due to quantum superposition 
principle. In a quantum system- Pauli, Hadamard, Controlled-NOT, 
SWAP, Toffoli, Controlled- Phase, and U-gates are used to build cir-
cuits.

Image classification and processing are fundamental tasks in 
computer vision, with applications spanning from medical diag-
nostics to autonomous vehicles and beyond. The primary objective 
of image analysis is to extract meaningful information from visual 
data. Transformers [2] were originally developed for natural lan-
guage processing tasks, but they have since been adapted for use in 
computer vision.

The vision transformer
A Vision Transformer [3] (ViT) is a deep learning model that 

uses the transformer architecture to perform image classification 

tasks. In a ViT, the input image is first divided into a set of fixed-size 
non-overlapping patches, which are then flattened into a sequence 
of vectors. These vectors are then passed through a stack of trans-
former encoder layers, which perform computations on each vector 
based on its relationships with the other vectors in the sequence.

At each transformer encoder layer, the input vector sequence 
is first processed by a multi-head self-attention mechanism, which 
allows each vector to attend to the other vectors in the sequence 
and aggregate information from them. This is followed by a feed-
forward network that applies a non-linear transformation to each 
vector independently. The output of the final transformer encoder 
layer is a sequence of vectors, each representing a different part of 
the input image. A MLP head is then added on top of the final se-
quence of vectors to predict the class label of the input image.

Literature survey
In their paper, Maria Schuld., et al. [4] discussed that quantum 

machine learning represents the convergence of quantum com-
puting and traditional machine learning techniques to process 
information and tackle complex problems. quantum computing 
harnesses the unique properties of quantum states, such as super-
position and entanglement, which allow for performing operations 
on multiple states simultaneously, potentially leading to signifi-
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cant computational speedups. In quantum computing, the funda-
mental unit of computation is the qubit, represented by a complex 
linear combination of the basis states |0⟩ and |1⟩. Quantum gates, 
expressed as unitary matrices, enable the manipulation of qubits, 
impacting their amplitudes, phases, and probabilities. These gates 
can perform operations on single qubits or controlled operations 
on multiple qubits, allowing for the implementation of complex 
quantum algorithms.

Figure 1: Visualization of qubit states, unitary gates and 
measurements for the quantum circuit model and matrix 

formalism [4].

Iris Cong., et al. [5] introduced Quantum Convolutional Neu-
ral Network (QCNN) as a novel quantum machine learning model 
inspired by convolutional neural networks, tailored for quantum 
computing applications. What sets QCNN apart is its exceptional 
efficiency, requiring only O(log(N)) variational parameters for in-
put sizes of N qubits. This efficiency facilitates practical training 
and implementation on near-term quantum devices. The QCNN 
architecture merges key elements of the multi-scale entanglement 
renormalization ansatz and quantum error correction. Its potential 
is demonstrated through two illustrative examples. First, QCNN is 
applied to the accurate recognition of quantum states related to 1D 
symmetry-protected topological phases.

Figure 2: Architecture of CNN v/s QCNN [5].

QCNN’s capacity to reproduce the phase diagram across a broad 
parameter range is showcased, even when trained on a small set of 
exactly solvable points. Additionally, an exact analytical QCNN solu-
tion is provided for this application. As a second application, QCNNs 
are leveraged to develop an optimized quantum error correction 
scheme, customized for a specific error model. The framework al-
lows simultaneous optimization of both encoding and decoding 
procedures. The result is a quantum error correction scheme that 
outperforms existing quantum codes of comparable complexity. 
The paper also addresses potential avenues for experimental real-
ization and explores generalizations of QCNNs. Overall, the Quan-
tum Convolutional Neural Network demonstrates its promise for 
efficient quantum machine learning and quantum error correction, 
making it a valuable contribution to the field of quantum comput-
ing.

Amir Fijany and Colin P. Williams [6] proposed the idea of wave-
let transforms in quantum computing, focusing on quantum im-
age processing and data compression. While the quantum Fourier 
transform (QFT) is well-established and powerful in quantum al-
gorithms, the study introduces the concept of quantum wavelet 
transforms as an equally useful tool in quantum computing. Wave-
let transforms are employed in classical computing to unveil the 
multi-scale structure of signals, and the paper suggests their po-
tential applicability in quantum domains. The research presents 
efficient quantum circuits for two representative quantum wave-
let transforms: the quantum Haar and quantum Daubechies D(4) 
transforms. The approach involves factoring classical operators for 
these transforms into direct sums, direct products, and dot products 
of unitary matrices.

Figure 3: Block-level circuit for Haar wavelet [6].

Permutation matrices, a specific class of unitary matrices, play 
a central role in this quantum wavelet transform design. The study 
underscores an interesting observation that some operations that 
are straightforward and inexpensive in classical computing may 
not be as straightforward and inexpensive in the quantum realm, 
and vice versa. Specifically, certain permutation operations, often 
avoided explicitly in classical processing, must be explicitly per-
formed in quantum computing, thus impacting the overall com-
putational complexity of the quantum transform. The research ad-
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dresses these issues, focusing on the set of permutation matrices 
relevant to quantum wavelet transforms, and develops 
efficient quantum circuits for their implementation. This work en-
ables the design of efficient and comprehensive quantum circuits 
for quantum wavelet transforms, paving the way for their applica-
tion in quantum image processing and data compression.

The paper by Matteo Farina., et al. [7] addresses the challeng-
ing computer vision problem of geometric model fitting, where the 
goal is to accurately fit geometric models to data points in an image. 
While quantum optimization has shown benefits for single-model 
fitting, this research introduces the first quantum approach to the 
more complex problem of multimodal fitting (MMF). In multi-
modal fitting, the objective is to fit multiple geometric models to 
the data, making it a more complex and open question. The paper 
demonstrates that quantum hardware can significantly enhance 
multimodal fitting and proposes an approach to MMF that can be 
efficiently sampled by modern adiabatic quantum computers.

Figure 4: Iterative pruning technique in DeQuMF [7].

This approach does not require relaxing the objective function, 
a common technique used in classical MMF methods. The study 
also introduces an iterative and decomposed version of the pro-
posed quantum method, which is designed to handle real-world-
sized multimodal fitting problems. Experimental evaluations of the 
approach on various datasets show promising results, highlighting 
the potential of quantum computing in improving the accuracy and 
efficiency of geometric model fitting, even in the context of multi-
modal fitting challenges.

Riccardo Di Sipio., et al. [8] explored the application of quan-
tum computing to enhance natural language understanding based 
on deep-learning models. The researchers successfully train a 
quantum-enhanced Long Short-Term Memory (LSTM) network for 
parts-of-speech tagging through numerical simulations. Addition-
ally, they propose a quantum-enhanced Transformer for sentiment 
analysis using existing datasets. The paper starts by referencing 
Cambridge Quantum Computing’s introduction of a “meaning-

aware” Quantum Natural Language Processing (NLP) model that 
combines the semantic information of words with the syntactic 
structure of sentences. This concept is based on the idea that cer-
tain syntactic structures can be formulated using principles from 
quantum physics, such as quantum statistics, which extends clas-
sical statistics and holds parallels with aspects of human language 
understanding.

Figure 5: Cross-entropy loss and multi-class accuracy as a 
function of training epoch for classical v/s quantum LSTM [8].

The study explores the application of quantum computing in 
NLP and describes the inner workings of LSTM networks, which 
have been historically used for sequential data analysis. LSTMs 
combine “memory” and “statefulness” to determine the relevance 
of input components in computing the output. The paper discusses 
the formulas and parameters involved in LSTM calculations, high-
lighting the key gates, and the need to replace linear dense layers 
with quantum equivalents. The paper also suggests that quantum 
computing can bring innovations to the field of LSTM, offering the 
potential for improved natural language understanding.

Proposed Methodology
In this paper, QuViT - Quantum Vision Transformer has been 

proposed. This theoretical approach will provide a starting point 
for the development of a fully functional vision transformer that 
runs on a solely on a hybrid classic- quantum environment. Refer 
to Figure 6.

Q-Input engine
The Q-Input Engine in QuViT is responsible for preprocessing 

the input image and preparing it for quantum processing. Fourier 
transformation is one technique that assists with the transition of 
spatial information to frequency-based data points. This allows the 
identification of hidden patterns, textures and structures that are 
embedded within the data distribution. Feature extraction is one 
such domain where fourier transformation excels in, as it makes it 
really powerful for tasks such as classification or object objection.
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Figure 6: Quantum Vision Transformer Architecture.

Let’s consider the input nxn image as I. Q-Input Engine pro-
posed in this paper, applies quantum fourier transform (QFT) [9] 
to transform the image into a quantum state representation, ρ, cap-
turing underlying patterns and structures, where.
𝜌 = 𝑄𝐹𝑇(𝐼) (1)

The QFT maps the spatial information of the image to the ampli-
tudes of a quantum state, generating quantum embeddings that en-
code image information. These embeddings store relevant features 
and are represented as a quantum register, serving as input for 
subsequent quantum processing stages. A visual representation of 
this process has been illustrated in Figure 6, where an input image 
of resolution nxn is passed into the Q-Input Engine. In this stage, 
quantum fourier transformation is applied, Q- embeddings are gen-
erated for each input mapping. With this stage, classical informa-
tion in the form of pixels and bits, have successfully been converted 
into quantum data format.

Q-Encoder
Guangxi Li., et al. [10] introduced the quantum self- attention 

mechanism in their research paper, where they used it for text clas-
sification. Its architecture has been illustrated in Figure 7. On quan-
tum devices, classical inputs are used as rotation angles for quan-
tum ansatzes, enabling their encoding into corresponding quantum 
states.

Figure 7: Quantum Self-Attention Mechanism [10].

These states are then subjected to three distinct classes of an-
satzes, each serving a specific purpose: the top two classes repre-
sent the query and key parts, while the bottom class represents the 
value part.

This mechanism is vital to the quantum encoder layer present 
in the Q-Encoder. On classical computers, Gaussian functions are 
employed to compute the measurement outputs of the query and 
key parts, resulting in the derivation of quantum self-attention co-
efficients. Classically weighted sums of the measurement outputs 
from the value part are then computed, and their combination with 
the inputs yields the desired outputs. The weights applied in the 
weighted sums correspond to the normalized coefficients obtained 
during the process.

The quantum state ρ is represented as a density matrix, which 
encapsulates quantum information about the input image. Each 
element of the density matrix corresponds to the probability am-
plitude of a specific quantum state. The density matrix ρ can be 
expressed as:
𝜌 = |𝜓₁⟩⟨𝜓₁| + |𝜓₂⟩⟨𝜓₂| + . . . + |𝜓ᵢ⟩⟨𝜓ᵢ| (2)

Here, |ψᵢ⟩ represents the individual quantum states, and ⟨ψᵢ| 
represents their complex conjugate transpose. The sum extends 
over all quantum states generated by the Q- Encoder, which cap-
tures spatial relationships and dependencies among the quantum 
embeddings using quantum self-attention. The expression gets trans-
formed as:

Where A represents the quantum self-attention mechanism 
applied to each individual outer product term. The quantum self-
attention mechanism is responsible for capturing correlations and 
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relationships between different quantum states |ψᵢ⟩ in the density 
matrix ρ. The output ρ› represents the modified density matrix af-
ter applying quantum self-attention to each term.

The quantum classification head is the final component respon-
sible for determining the class to which the input image belongs. 
After applying quantum self-attention to the modified density ma-
trix ρ›, the quantum state ρ› encapsulates the quantum information 
and relationships between different quantum states |ψᵢ⟩. The main 
role of this components is to use this quantum information to make 
a classification decision. Let’s update the mathematical expression 
to represent the quantum classification head’s operation. After ap-
plying quantum self-attention and before classification:

Now, let’s represent the process within the quantum classifica-
tion head:

Here, Q represents the quantum classification mechanism or 
classical neural network layers that take the modified density ma-
trix ρ› as input and produce a classification decision. The output 
can be the class label to which the input image is assigned.

Q-Decoder
The final component in the proposed QuViT architecture is the 

Q-decoder. Within this, the quantum-classic translator component 
processes the classification decision, which is a result of the quan-
tum classification head, into a quantum state that can be further 
processed in the classical decoder layer. This process can be repre-
sented as follows:

Here, T represents the quantum-classic translator, and it trans-
forms the classification decision into a quantum state ρ’’ suitable 
for further quantum-classical processing. After obtaining the quan-
tum state ρ›› from the quantum-classic translator, it is passed to the 
classical decoder layer for further processing. The classical decoder 
layer can include classical neural network layers that decode the 
quantum information and make it compatible with classical pro-
cessing. This process can be represented as follows:

Here, D represents the classical decoder layer, and it decodes 
the quantum information in ρ›› into a format that can be used for 
classical post-processing and output generation.

Future Works
At the time of writing this paper, the author did not have direct 

access to a fully functioning quantum computing machine. As a re-
sult, this work serves as an innovative theoretical foundation and 
proposal for the QuViT architecture. This offers a promising ap-
proach to leverage the computational advantages of quantum com-
puting for image processing and classification tasks.

The author of this paper enthusiastically invites researchers 
who have access to quantum computing resources to design and 
conduct experiments based on the proposed architecture. These 
experiments should explore the practical implementation and per-
formance of the proposed model. The author also encourages pub-
lishing the experimental results, highlighting the potential benefits 
and advancements achieved through the QuViT model.

Conclusions
This paper introduces and extensively explores the QuViT 

(Quantum Vision Transformer) architecture, a novel approach to 
revolutionizing image processing and classification tasks using the 
computational power of quantum computing. QuViT represents a 
significant advancement in the field of computer vision, offering 
the promise of more efficient and accurate image classification.

The proposed architecture is built upon a foundation of quan-
tum image encoding, quantum Fourier transformations, and the 
application of quantum self- attention mechanisms. It integrates 
classical and quantum processing components to create a hybrid 
framework that can efficiently handle the intricacies of image 
data and patterns. It also addresses the challenges associated with 
traditional computer vision techniques by leveraging the superpo-
sition and entanglement properties of quantum states, which en-
able simultaneous processing of multiple states and capture intri-
cate relationships within images.
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