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Abstract

In this paper we shall present a method for solving local fractional differential equations. This method is based on the combina-

tion of the Shehu transform and the local fractional derivative (we can call it the local fractional Shehu transform), where we have

presented some important results and properties. We concluded this work by providing illustrative examples, through which we

focused on solving some linear local fractional differential equations in order to obtain non- differential analytical solutions. From

the results obtained, it can be concluded that this suggested method is effective when applied this type of local fractional partial

deferential equations.
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Introduction

Transformations defined by integrals play an important role in
the resolution of ordinary differential equations, partial differen-
tial equations and in the resolution of integral differential equa-
tions with integer order or fractional order. It also intervenes in
mathematical physics, probability calculus, automatics, engineer-

ing, etc...

Among the most famous transformations, we find the Laplace
transform method [14], the Fourier transform method [23], the
Mellin transform method [24], and there are other transforma-
tions that have appeared in the recent period, we cite for example,
the Sumudu transform method [25], the Natural transform meth-
od [26], the Ezaki transform method [27], the Aboodh transform
method [28], the Shehu transform method [10] and others.

The work in this paper is based on the Shehu transformation
method, as this transformation that have appeared recently and is

defined by an integral due to its association with the well-known

Laplace transform [14]. It was recently discovered by Maitama and
Zhao in 2019 [10], and has been used by many researchers in the
field of mathematics to solve both ordinary and partial differential
equations of integer order ([1,2,10,20-22]), both ordinary and par-
tial differential equations of fractional order ([6,9,11,12]), integro-

differential equation [3], and integral equation [4].

The main objective of the present work is to combine the local
fractional derivative with the Shehu transform in order to resolve
linear differential equations with local fractional derivative. We
supported this work with illustrative examples showing how to ap-

ply this transform with the use of local fractional derivative.

The structures of the paper are as follows. In Section 2 some
basic definitions and properties of the local fractional calculus and
local fractional Laplace transform method. In section 3, we present
some important results. In section 4, we apply the local fractional
Shehu transform method (LFST) to solve the proposed example. Fi-

nally, we conclude with the conclusion.
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Basic of local fractional calculus

In this section, we give the concepts of local fractional derivatives

and integrals and polynomial functions on cantor sets.

Definition 1
([13,15,16]) If there exists the relation

|O(7) - D(7,)| < 77,

With |‘[ — ‘L'O| <0, for &5>0, and 6 €R. Now D(v) is
called local fractional continuous at 7 = 7, , denote.

By lim,_, ®(7)=®(7,) Then ®(7) is called local fractional
continuous on the interval (@,b) , denoted by () e C (a,b)

Definition 2
([13,15,16]) Setting ®(7) € C_(a,b)
rivative of @(7) of order O at 7 = 7, is defined as

, the local fractional de-

N (D)~ D7)
(-1,

b

@) (7)) = dG‘D(T)|
(7)) = =l
Where
N (D(7) - D(z,) =T (1+0)(P(r)-D(z,)]

Definition 3
([13,15,16]) The local fractional integral of CD(T) of order O in
the interval [@, b] is defined as

b

() = F(%M)ch(ﬁ dcy’,

Zf(ﬂAC)

Aé’ = max{Ago,Agl,Agz,...} and
=a, £, =b, isapartition of the interval [a, b]

m A5—04
Where A, =¢,, -,
[gi > §i+1 ]’ élo

Definition 4
([7,13,19]) The local fractional Laplace transform of (D(T) of or-
der O is defined as

L @)} = F,(s)=

F(l IE (=s777)D(rf d7)°.

If L {(I)(r)} =F_(s) the in\//ierse formula is given as follows
)= LAF, ()=

oo

) p—in
Where @(7) s local fractional continuous, s°

Re(s) = /> 0.

7, and

=% +i%w

38
Theorem 1

([15])If L_{®(z)} = F, (s) then onehas
L {0 (2)|=5"L_{@(z)}-D(0)

Proof
See [15].

Theorem 2
(15D If L {(D(T)} =F_(s) then one has

L {170} = —L o)

Proof
See [15].

Theorem 3
(150 1f L {®(r)}=

has

LA@@)*¥(2)),} = F,(5)Q,(s)

F_(s) and L_{¥(r)}=Q_(s) , then one

Where .

(@(r)*¥(z)), = fiso) j O(x)P(r—xfd ).
Proof

See [15].

Theorem 4

([17]) Suppose that ®(7) € C_[a,b] then there is a function
I(r) = I (I)(r)

The function has its derivative with respect to (d7)“,
d°’I(r)
(dr)”

Proof
See [17].

=®(r) a<t<bh.

Main Result
In this section, we present the local fractional Shehu transforma-

tion (LFST) method and some properties are discussed.

If there is a new transform operator S ®(r) > Q_(v,v) »

namely,

E 5 lo)=" S {Z a, 1+k0)}= iak(uj(m)a.

k=0 v
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For example if ®(7) = E_ (iGTJ) we obtain
v S i l-ko'z_kc
| Trd+ko)]|’
» (k+1)o
= Zl”“’(vj ,
=0 v
F({Jr_aj’ we get
o 20
14
£ So‘ 77 :T.
ri+o)] o>

As the generalized result, we give the following definition.

v s {E, (%)=

Andif (1) =

Definition 5
The local fractional Shehu transform of ®(7) of order T is de-

fined as

vT

* S =0, )=

The inverse transformation can be obtained as follows

s O)
Theorem 5
(linearity) If ¥ §_{®(7)}=Q_(v,v) and £ §_{¥(z)}=T1_(v,v)

then one has

£s {/161)(2') + ,u‘P(r)}: AQ_(v,v)+ 1 _(v,v)

Where A and /! are constant.

Proof

Using definition 5, we obtain

£ s o@) + ¥ (e)} =

Ea[f%j{m(f)ﬂﬂ’(f)}(df)”,

F(HU)J;
| e et )
7r(1+g)ﬂ50[' o )(M’(T)FEU[- - )(ﬂ‘*’(f)) (dr)°
_ A v 2 . u “
= F(HU)J;EU[ 7 j@(ri dr) *Tieo) J;E [ ] do)”,

=2Q,(v,v)+ M1, (v,v)

This ends the proof.

TEO,[—)(D(rI dr)?, 0<o<l.
0 v

39
Theorem 6

(local fractional Shehu-Laplace and Laplace-Shehu duality)
If L, {(D(T)} =F_(s) and® §_ {CD(T)} =Q_(v,v) then one

has
° 8, @@}=F,C)
L D@} =Q_(sv,v)

Proof
First, we proof the formula (1).

Using the definition 5, we find

. . )
S, @)} = r(1+ )l ( J]cb(r;dr),

17 vY -
- F(l+n)£E”[(vj T Jcp(fy dr)°,

- F, (5)

Now we prove the second formula, we have

1
Q,(,v)=F,(=)

v
By substituting S =%, we obtain

F (s)=Q_(sv,v)

Therefore, we get

LAD(@)}=Q, (sv,v)

This and the proof.

Theorem 7
(local fractional Shehu transform of local fractional derivative)

If 7 s _{®()}=Q_(v,v) thenonehas

£ 8 {Dg o) =2-Q, (0,v)-D(0) 0<o<l,
1%
And

n—1

(n—k-1)o
F SG{D””CI)(r)} (”) ®* )0y 0<o<1.

Proof
We proof the first formula. Using the definition 5 and the integra-
tion by parts [Guy], we get the following
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LS {0 (r))=

1 7 _UG‘L'{T (o) o
F(1+0)-[E6[ ve jq) (e} do)”,

[- r(1+a)cb(0)]+—hij (

F(1+ )[

v 1 ©
=00+ [mm)JE (

o

=20, ) -(0)
v

“—i}b(ri dr)”],

To demonstrate the validity of the second formula, we use math-

ematical induction.

If n =1, we obtain

£ fo0)= %QU(U,V) - ®(0)
v

So, according to the first formula of Theorem 7, we note that the

formula holds when 7 =1.

Assume inductively that the formula hol(%s folr) N , so that
ORI e )} Y, (v)- Z( j @)(0)
It remains to show that (A32) is true for n+1 Let

DIedD(r) = W(r) (where ¥ S_{¥(r} =11, (v,v) ), we have

5 [peea))=* s, [pgwn)=

B Uo‘ Ulm‘
Vo' Vrzo'

IT, (v,v) —¥(0),

VO‘
w7 \(k Do

- H <D‘“>(0)}—T(0),
=0\ V

(n+l)o =10y (n-k)o /
-Ura.en-3[Y) e o- oo
k=0

(n+l)0 n

(n—k)o
U 1% ko
= o Q1) Z(V) ®)(0)

Therefore the formula is true for 7 + 1.

Thus by the principle of mathematical induction, for all # > 1, the

second formula of this theorem holds.

Theorem 8
(Local fractional Shehu transform of local fractional integral)
e s {@(T)} =Q_(uv,v) thenone has

£S5, 1! @(r)}:—e V)

al jd)(rﬁ dr)"],
ve

40
Proof

Let P(Z’) =
get
Dy P(7)

015")(1)(1-) According to the (theorem 3.2.9, [X]]), we

()

And
P(0)=0.

Taking the local fractional Shehu transform on both sides of this
equation, we have
v s ApgP@))=" 8 (o)
Which give
(s P = Q0.

S @(0)}=Q,(v,v)

Because P(0)=0, and E

Thus we get

rg {015")@(7)}:290(0,@
D

Theorem 9

(local fractional convolution)
F s {o@)}=Q, (v,v) and ¥ S {¥()}=T1_(v,v) ,

then one has
E S, {(CD(T) * ‘I’(T))G } =Q_(v,VII_ (v,v)
Where

(@(0)*¥(7)), =

1 .
m!@(z)\?(r—tw) .

Proof
Using the definition 5, gives

L=
r2(1+a)£E"[_

- TEJ(fUJ(T_t)JJEG(f

I“(+o)y ve

We make the change @ =7 —X and 0 = X , we get

s @@ (), = “VZU J(dr)” [oey¥-mdy,

g](dr)” j.CD(t)‘{"(r—t]E a).
v 0
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Fo @), )

T (1+0)TE"[ Uf J‘D(p“p) IE[

=" 5, 0@))" S A¥(r))

o j‘l’(a)l dw)?’,
ve

This and the proof.

Shehu transform of some special functions
In all of the following results, we relied on the first formula of defi-

nition 5, and some of the results found in references ([5,18]).
If ®(7) =1, we get

. _ 1 < v
So = rd+o) !E"[ ve

X
o o o
.| =V LT
= lim E_| — s
x—ol DT ve
0

](df)“,

If O(r) =

we get the following

1—(1+0_) (0 <o <1) using the integral by parts [Guy],

o_0

1 _[Ea vt
I(l+o)y ve
1 X[ _4,° o __0 (U) o
= ——lim| [| = E,| - LA
C(+o)== ¢\ v° ve I'(l+o)
LA St [E,| - |@o) |

L7 T(1+0) >y ve

Because hmx_m |:—chr EJ (_ uvz )r(i._‘Fo')t =0.

]r"(dr)”,

Z-)J b

Therefore
E Sg{r”}: 11m|: ‘; E({— v - H )
U X—>00 U V
0
B VZo'
UZO‘
Ifd(r)=E_ a"z‘"), using the definition 5, we get

41

g A J)TEJ(_ v’ aan(a“r")(dr) ,
0
Lt (w=av)’7? -
B F(1+0')'([E0( Ve )(df) ’
_ hm{ —-v° E (_ (v=—av)’z® H
o | 07 —ag%Vve 7 Ve 0’

— VO-
V-V

~ (aa‘[g), we get

£ Sa{r"EU((ar)“)}: F(ILG)IEJ(_ U::U JT‘TEU((az')U}dT)J,
17 w-av)’z’) , . o

:r(1+6)£E6(— v ‘LZ 4 ]r (dr)°,

ve 1

B T (v—av)’r

7(1)—01/)5 F(1+0')-([E [ ve J(d )

_ v’ lim{ -ve EJ(— (v—av)°z’ Hx
(v—av)? == (v-—av)’ ve .

Because lim [(U:::)g E, (_ (u—av‘;)«,a )Ta];' —0.

Ifd(r)=7°E

Therefore, we get

rs {T“EG ((a ) )}: (U—VT)ZG.

If d(7) = sing((a r)a) (0< o <1) weget

20

(dr)”

75, i e = E(W\E[wmlm,[m,]

T(+o) V) %°

11 I{E[ (- J E{ (maw)”r”]} iy,
T o) Vv v

1% Vv EF[ (u_amr')"rf}+ v Eg[ (m)"fﬂ_
T (i) Vv (i)’ Vv

After the calculations we find

20
F . o_o av
S_wsin_(a°7%) .
O‘{ (e} } + aZGVZG
If ®(7) = cos, ((at)) (0<o <] knowing that

and by following the same

oy _ E\i(ar Eafi”ar
coso((az') )—E { )FZE ( y,

previous steps, we get
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voo?
0 +a*Vv

s, {cosa ((a r)g)}—

Ifd(r)=E, ((a z’)d )sina((bz')d) (0<o 1) we obtain

l @ vor° U‘ ( (bT) ) ( (bz') ) .
= E |- E d
F(1+c7)-l[ ( Ve ] a((‘”)/ 2 (dr)’,
20 T(l+o)3| ° Vo 4 L ,
v (v-(a+b W)’ _o
1 - SE \-——0—1
— L fim| @em v
2i° XEE _|_( (v‘; _E, _(u+(a+f W)° 0
v-(a=b)v) Vv 0

After the calculations we find
bO'VZO'

(L—av)” +bv*’

© 54 ((ae) Jsin, (e )=
If O(r)=E, ((a ) )COSU((b 7)) and by applying the definition 5,
we get
e, {EG ((az) )eos, (b2))}

r(1 L I ( J £, (aey )2 (i (br) )+ E, [ i"(br)a)(dr){,

2
1 T{Eg[_(u—(a+b)v)”TUJ+E0(_(U—(a—b)V)“TU]
2T (+0)y ve ve

X

_ Ve _ (v=(atb)v)” J)

= 1lim{ (0~(a+b )v)” EG( . }
0

- Vo  (ur(asb ) rr)
2 x>, @y Ea—( " T

And by doing some calculations, we get the final result
F o o vo (7 —av?)
SJ{EG ar) Jcos, (bt }: .
(( ) ) (( ) ) (U _ av)Zd + bZUVZG

If ©(7) =sinh_((a7)”) (0<o <1) weobtain

42

E Sg{sinhg((ar)")}
F(1+0' -[ (

el
e

ja ]sinhd((a oV § do)’,

sinh (aT :|

Y (2

v’ F(l + 0') "ﬂw

o 20
-4 12/6 lim { a( al Z )cosha((ar) )}
1) 70 v

20 20 X
1 .
+4 ZV hmIEG -
v I'(l+o) ™=y

By performing simple operations, we find

]cosh (az)y dr)°,

X

0

UG:U jsinha((a oy dr)°,
v

a®v3°
0% — q2°V3e

v s fsinh_(az))}=

If ®(r) =cosh,((ar)”) (0<o <1) we obtain
Fs. {cosh(, ((az')”)}

¥s {cosh (ar)” )}

1 T vir - -
mJE [ e Jcosh‘r([m’] )dT)° .
Jcosh (laz)) }

11.m|: {
T
. ]smh (ar)" Xdr)Y°.

——— lim|:Eq{—U Zg )smhg((ﬂr)a)}
v TS v

+(m:] L _lim|[£, |-
v 1"(1+G)Hx

a

T

o

v )coshq((ar)” oy,
Vv

_ Vv

r.f U‘“ 1"(1+cr-c[ [

s ]coshq ((at) Ydr)°.

By performing simple operations, we find.

Illustrative examples

In this section, we will apply the local fractional Shehu transform

(LFST) to some suggested local fractional differential equations.
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Example 1
First, we consider the following local fractional differential equa-

tion of order

dL((f) +o(r)=-1,0<o <1’
dr

With the initial condition

@(0) = 0.

Taking the local fractional Shehu transform on both sides of given
equation, we have

o

5—5 LFSU {(o(r)}f a(0) + LFSU {co(r)} =— LFSU {1}

Then
(1) s.loke =
v v
Which give
20

S, olr))= —ﬂ;aﬁ)a
_vrv
0T +ve 0%

By applying the inverse transformation, yields

olr)=E (-t°)-1.

Example 2

Next, we consider the following local fractional differential equa-

tion
d°w
ﬁ —20(r)=2, 0<o<l.
dr
With the initial condition
w =

Taking the local fractional Shehu transform, we have

Vs o)} -27 s o) =22

VO'
By following the same steps as the previous example, we obtain
o [e3
E v v
DN I —,
L 19

-2v°
Take the inverse transformation, we get

o(r)=2EQ27°)-1.

This result represents the exact solution to our equation.

43
Example 3
Finally, we consider the following local fractional differential equa-

tion of order 24, (0< o <1)

20 o
o)
dr™’ r(l+0)
Subject to the initial conditions
w0 =0, 20 _

dr°

Taking local fractional Shehu transform, we have

Vs kel ! S, fole) =

2 20 °
Vo’ o

By following the same steps as the previous example, we obtain

20 20
14 14
FSele)l=
vtV 1%
Take the inverse transformation, we get

o(r)=sin_(z7) - il

Fg +
This result represents the exact solution to our equation.

Conclusion

In this work, we proposed the local fractional Shehu transform
based on the local fractional calculus and its results were discussed,
where we presented some important results and properties with
their proofs. To prove the effectiveness of this method, we have ap-
plied it to solve some linear local fractional differential equations,
where we found the results to be accurate and from the type of
no differential functions. Based on the results of the suggested ex-
amples, we can say that this method is practical and effective in

solving other forms of linear local fractional differential equations.
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