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Abstract
   The analysis of sample-based studies involving sampling designs for small sample sizes is challenging because the sample selec-
tion probabilities (as well as the sample weights) are dependent on the response variable and covariates. This research focused on 
nonparametric weighted linear models in order to find more precise estimators with lower sample bias. The study has used rank-
based approaches because they outperform least-squares procedures when the data deviates from normality and/or contains outli-
ers. Weights can be added to these approaches to create weighted strategies (WT). In this paper, we demonstrate how to construct 
WT estimates using rank-based regression. Rank-based estimators were developed to provide a nonparametric, robust alternative 
to traditional likelihood or least squares estimators. They are then used to generate estimates with higher relative efficiencies and 
lower finite small sample bias than the Horvitz-Thompson weighted estimator with unmodified weight. The purpose of our study is 
to compare estimators using the reciprocal of the sample inclusion probabilities and other weights derived by modifying and rescal-
ing them using relative efficiency, sample bias, and standard error for small sample sizes. The constructed estimates using different 
modified and rescaled weights are actually the weighted nonparametric estimators. The study compared three new estimators for 
both the unmodified and modified weights, which were found to have better relative efficiency and smaller finite small sample bias 
than the estimates from the conventional Horvitz-Thompson weighted estimator. 
Keywords: Small Samples; Estimators; Relative Efficiency; Sample Bias; Standard Error

Introduction

The study has focused on using nonparametric linear models 
with different modified and rescaled weights to estimate the rela-
tive efficiency, sample bias, and standard error. They were used in 
the study to generate estimates with higher relative efficiencies 
and lower finite small sample bias than the Horvitz-Thompson 
Weighted Estimator with unmodified weight. 

The model
Suppose the data is produced according to a function: 
f ( y | x; θ) g(x)                                                               ----------------- (1.1) 

Where y is a response variable which is multivariate and x is a 
continuous or discrete vector of covariate variables and 
f ( y | x; θ)                                                                               ---------------- (1.2) 

Is the regression part of the function. The marginal distribution 
of x is denoted by g(x ) which for this study we have used Gaussian 
density to represent, as shown below 
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We describe the conditional distribution of y given x1 as θ. The 
likelihood is given by 

( );f y x θ∏  
------------(1.4)

As explained, refer to [5,6].

Rank-regression
The purpose of rank-based regression, like least squares, is to 

estimate the vector of coefficients, β, of a general linear model of 
the form:

T
i i iy x eα β= + +  for I = 1……..,n                          --------------- (2.1)

yi is the response variable, xi is the explanatory variable vector, 
α is the intercept parameter, and ei is the error term. We assume 
that the errors are associated with the probability density function 
(pdf) f(t). (2.1) is written in matrix notation as follows for conve-
nience.
y = α1 + Xβ + e                                                                        ---------------(2.2)

Therefore y = [y1,. . .,yn]T is the n x 1 vectors of outcomes, X = [x1,. . 
., xn]T is the n × p design matrix, and e = [e1,. . .,en]T is the n × 1 vector 
of error terms. The model is broad because the sole assumption on 
the distribution of errors is that it is continuous. Remember that 
the least squares estimator minimizes the Euclidean distance be-
tween y and ˆˆLS LSy X β= . To obtain the R estimate, a new distance 
measure, refer to [4] based dispersion function is used. The disper-
sion function refer to [4], is given by

( )D y X
ϕ

β β= −                                                     ----------------- (2.3)

Where .
ϕ

 is a semi-norm defined as
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Where R symbolizes rank, ( ) ( )1
t

na t ϕ +=  and ϕ  is a square-
integral, non-decreasing score function defined on the interval 
(0, 1). Assume it is standardized without losing generality, so that 

( ) 0u duϕ =∫  and ( )2 1u duϕ =∫ .

The R estimator of β is defined as follows:
ˆ minArg y Xϕ ϕ
β β= −                                                 ------------- (2.4)

This estimator is exceptionally efficient and resilient in the Y-
space. 

Weighted non parametric weight
The process of obtaining the sample weight, which is the recip-

rocal of the sample inclusion probability, refer to [5,6]. Below is the 
weight:
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        -------------- (3.1) 

 
Weighted conditional non parametric estimator

For the process of obtaining the modified sample weight refer to 
[5,6]. Below is the modified weight:

 ( ), , , ,S i i i
a

E w y v
w

δ θ γ β
δβ

=                                       -------------- (3.2)

Non-parametric rescaled weight (NPRW(I))
For the process of obtaining the modified sample weight, refer 

to [5,6]. Below is the modified weight:
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Non-parametric rescaled weight (NPRW(II) & NPRW(III))

For the process of obtaining the sample weight, which is the 
reciprocal of the sample inclusion probability, wi refer to [5,6]. 
The Non Parametric Rescaled Weight (NPRW(II)) is obtained fol-
lowing the process given here. The absolute difference between 
the regressed observed and the observed value of the dependent 
variable and the conditional expectation of the difference between 
regressed and observed value of the dependent variable y on the 
predictor variables x1 ,x1 and z, y and z, and y, x1 and z is first ob-
tained. Then the product of the reciprocal of the sample inclusion 
probability and ratios of the absolute difference and conditional 
expectations is obtained to give the weight. Seen below: 

 ( )
( )

( )
( )2 134

2 13

, , ,

,
reg Est i i reg Est i i iregEst i reg Est im

i i
reg Est i reg Est iregEst i i reg Est i i

E y y x z E y y y x zy y y y
w w

y y y yE y y x E y y y z

      − −− −      =
      − −− −      



( )
( )

( )
( )2 134

2 13

, , ,

,
reg Est i i reg Est i i iregEst i reg Est im

i i
reg Est i reg Est iregEst i i reg Est i i

E y y x z E y y y x zy y y y
w w

y y y yE y y x E y y y z

      − −− −      =
      − −− −      



---------------(4.7)
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Meanwhile, the non-parametric rescaled weight (NPRW-III) 
is obtained following the process given here. The absolute differ-
ence between the regressed observed and observed value of wi, as 
well as the conditional expectation of the difference between the 
regressed and observed value of wi on the variables x1 and z, y and 
z, and y, x1 and z, are obtained first. Then the product of the recipro-
cal of the sample inclusion probability and the ratios of the abso-
lute difference and conditional expectations is obtained to give the 
weight. See below

 ( )
( )

( )
( )2. 1 1.3.

2. 1.3.

, , ,

,
reg Est i reg Est i iregEst i reg Est i

d i
reg Est i reg Est iregEst i i reg Est i

w w x z w w y x zw w w w
w w

w w w ww w x w w y z

      Ε − Ε −− −      =
      − −Ε − Ε −      

 
 
 
 
 
Non-parametric weight (NPW(I) & NPW(II))

The process of obtaining the sample weight, which is the re-
ciprocal of the sample inclusion probability, is described in [5,6]. 
The non-parametric rescaled weight (NPW(I)) is calculated using 
the procedure outlined here. The conditional expectation of the 
difference between the regressed and observed value of the de-
pendent variable y on the predictor variables x1, x2, x3, and x4 and 
the sum of the conditional expectation of the difference between 
the regressed and observed values on x1, x2, x3, and x4 are first 
obtained. The weight is calculated as the product of the reciprocal 
of the sample inclusion probability and the ratio of the conditional 
expectation of the difference between the regressed and observed 
value of the dependent variable y on the predictor variables x1, x2, 
x3, and x4, as well as the sum of the conditional expectation of the 
difference between the regressed and observed values on x1, x2, 
x3, and x4. See below:
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---------------(4.8)

---------------(4.9)

The non-parametric rescaled weight (NPW-II) is obtained fol-
lowing the process given here. The conditional expectation of the 
difference between the regressed and observed values of the re-
ciprocal of the sample inclusion probability is dependent on y, x2, 
x3, and x4, and the sum of the conditional expectation of the dif-
ference between the regressed and observed values of the recip-
rocal of the sample inclusion probability on y, x2, x3, and x4 is first 
obtained. Then the product of the reciprocal of the sample inclusion 
probability wi and the ratio of the conditional expectation of the 
difference between the regressed and observed value of the re-
ciprocal of the sample inclusion probability on y, x2, x3, and x4 and 
the sum of the conditional expectation of the difference between 
the regressed and observed values of the reciprocal of the sample 
inclusion probability on y, x2, x3, and x4 are obtained to give the 
weight. Seen below:
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Weights used for re-weighting estimators

The table below gives weights used to re-weight estimators 
starting with sample inclusion probability, 1P .
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Weights used for re-weighting estimators
s/n Estimator Plan - Type Weight

1. NPWLE 1P−


2. WCNPE(I) wa

3. WCNPE(II) wb

4.

5.    NPRW(II)

6. NPW(I) =wc

7. NPRW(III)
= wd

8. NPW(II) =we

Table a
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Weights used for matching estimators
s/n Estimator Weight-Type Weighting equation
1. NPWLE P̂-1 wi=1/g(xi)
2. WCNPE(I) wa wa=WCNP(I)

3. NPRWE(I) 3m
iw =NPRW(I)

4. NPRWE(II) 4m
iw 4m

iw =NPRW(II)

5. NPWE(I)
cw cw =NPW(I)

6. NPRWE(III)
dw dw = NPRW(III)

Table b

NPRW(I)

Weights used for matching estimators

3m
iw

3m
iw
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Finite small sample properties of estimators 
The first property deals with the mean location of the distribu-

tion of the estimator. 

Biasedness - The bias of an estimator is defined as:

( ) ( )ˆ ˆBias Eθ θ θ= −                                              ------------------- (5.1)

Where θ̂ is an estimator of θ, an unknown population param-
eter. If E (θ̂) = θ then the estimator is unbiased. If E (θ̂) ≠ θ then the 
estimator has either a positive or negative bias. That is, on average 
the estimator tends to over (or under) estimate the population pa-
rameter. 

s/n Estimators Coeff. Det. Sample Bias Standard error AIC BIC rmse Var. ratio
1. NPWLE 

(HT)
0.800345925994816 0.0704873959 0.1133457038 145 148 61.40643 1.000

2. WCNPE(I) 0.999999999999998 7.77156e-16 1.46134e-15 -66.9 149 2.475e-06 7.639
3. NPRWE(I) 0.966488126946826 0.0109821936 0.0206298061 108 111 13.04562 3.719
4. NPRWE(II) 0.9999999999999992 3.330669e-16 3.218755e-16 -266 -263 2.242e-06 2.919
5. NPWE(I) 0.9999999999999603 1.154632e-14 2.065846e-14 -267 265 2.120e-06 167.1
6. NPRWE(III) 0.9999999999999603 1.187939e-14 2.060457e-14 -267 -265 2.119e-06 167.1

Table 1: Summaries of Estimators Performance  for Generated Data, n = 12.

A second property deals with the variance of the distribution 
of the estimator. Efficiency is a property usually reserved for unbi-
ased estimators.

Efficiency - Let θ̂1 and θ̂2 be unbiased estimators of θ with equal 
sample sizes. Then, θ̂1 is a more efficient estimator than θ ̂2 if

 ( ) ( )1 2
ˆ ˆvar varθ θ<                                                              ----------------- (5.2)

refer to [5,6].
 
Results

For each sample plan, we ran the simulation 10,000 times. We 
used software programs built for weighted estimator analysis in R.

s/n Estimators Coeff. Det. R2 Sample Bias Standard error AIC BIC rmse Var. ratio
1. NPWLE (HT) 0.4414891306018555 0.3150583870 0.1873574593 -84.6 181 528.1731 1.000
2. WCNPE(I) 0.9999999998264293 8.302836e-11 9.121266e-11 83.8 86.2 2.056e-05 2.1e05

3. NPRWE(I) 0.9999999999227354 3.638156e-11 4.524960e-11 -203 -201 1.372e-05 2.1e05

4. NPRWE(II) 0.9999999999227354 3.691025e-11 4.379275e-11 -203 -201 1.372e-05 2.1e05

5. NPWE(I) 0.9999999999999972 9.992007e-16 1.629883e-15 -289 -287 2.769e-07 1.8e04

6. NPRWE(III) 0.9999999999999991 3.330669e-16 4.696557e-16 -301 -265 1.585e-07 1.8e04

Table 2: Summaries of Estimators Performance for Real Data, n = 12.

Table 1 shows that the Estimators have greater relative efficien-
cy and coefficients of determination than NPWLE(HT), and so are 
more efficient for Simulated Data for n = 12. Where NPWLE(HT) is 
our reference estimator, the Horvitz-Thompson Estimator.

According to the results in table 2, all estimators with a rela-
tive efficiency larger than one are more efficient than NPWLE(HT), 
which is the Horvitz-Thompson Estimator for n = 12.
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The results in table 3 for the generated data show a summary of 
the performance of the coefficients of weighted estimators based 
on bias and standard error for n = 12, and the summary shows that 

s/n Estimators

0β̂ 1̂β 2β̂ 3β̂ 4β̂
Bias Error Bias Error Bias Error Bias Error Bias Error

1. NPWLE

(HT)

-1.0998e+04 7.7141e+01 1.0998e+00 3.7291e+00 -4.3881e-02
6553.1 32876.5 -21.144 97.409 -0.164 5.693 -6.646 41.323 -0.356 1.931

2. WCNPE

(I)

-62.502529 0.114179 0.005019 0.098543 -0.008280
406.935 8169.08 -0.620 12.947 -0.036 0.739 -0.494 10.060 -0.009 0.289

3. NPRWE

(I)

96.453305 0.243113 0.000870 -0.015891 0.002458
-1.3e-01 3.7e+00 3.9e-04 1.2e-02 2.0e-05 5.8e-04 9.6e-05 3.0e-03 1.5e-08 2.2e-07

4. NPRWE

(II)

96.453305 0.243113 0.000870 -0.015891 0.002458
-1.3e-01 3.7e+00 3.9e-04 1.2e-02 2.0e-05 5.8e-04 9.6e-05 3.0e-03 1.5e-08 2.2e-07

5. NPWE

(I)

-9.3860e+01 3.7993e-01 2.8069e-02 5.1453e-02 5.5068e-04
-1.3e-02 9.2e-01 2.1e-04 4.8e-03 6.6e-06 1.5e-04 2.2e-05 6.8e-04 -3.6e-10 9.7e-09

6. NPRWE

(III)

-9.3860e+01 3.7993e-01 2.8069e-02 5.1453e-02 5.5068e-04
-1.3e-02 9.2e-01 2.1e-04 4.8e-03 6.6e-06 1.5e-04 2.2e-05 6.8e-04 -3.0e-10 8.2e-09

Table 4: Summary of the Performance of Coefficients of Weighted Estimators based on Bias and Standard Error for actual Data, n = 12.

s/n Estimators
Bias Error Bias Error Bias Error Bias Error Bias Error

1 NPWLE (HT) 898.741310 -3.039630 -0.134045 0.224827 -0.066847
53.346 441.375 0.185 2.033 -0.017 0.113 -0.021 0.254 -0.019 0.121

2 WCNPE (I) 370.391641 -1.951511 -0.032212 0.144849 -0.038341
-7.472 98.537 0.045 0.414 0.002 0.025 -0.001 0.053 -0.002 0.027

3 NPRWE (I) 115.035368 -2.484001 0.011200 0.280233 0.018031
8.8e-07 1.8e-05 -1.2e-09 7.4e-08 -1.9e-10 4.5e-09 5.6e-10 8.0e-09 -5.4e-10 4.9e-09

4 NPRWE (II) 115.035368 -2.484001 0.011200 0.280233 0.018031
8.8e-07 1.8e-05 -1.2e-09 7.4e-08 -1.9e-10 4.5e-09 5.6e-10 8.0e-09 -5.4e-10 4.9e-09

5 NPWE (I) 54.867425 -0.189712 -0.001530 0.025961 -0.013883
-2.2e-06 1.9e-05 -4.5e-09 7.0e-08 9.6e-10 4.8e-09 -1.1e-10 9.7e-09 5.3e-10 4.8e-09

6 NPRWE (III) 54.867425 -0.189712 -0.001530 0.025961 -0.013883
-2.2e-06 1.9e-05 -4.5e-09 7.0e-08 9.6e-10 4.8e-09 -1.1e-10 9.7e-09 5.3e-10 4.8e-09

Table 3: Summary of the Performance of Coefficients of Weighted Estimators based on 
 Bias and Standard Error for Generated Data, n = 12.

0β̂ 1̂β 2β̂ 3β̂ 4β̂

the coefficients of the weighted estimators appear to have smaller 
bias and standard errors than the Horvitz-Thompson Estimator for 
n = 12.
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