

ACTA SCIENTIFIC COMPUTER SCIENCES

Volume 5 Issue 1 January 2023

(FG,σ)- Purity and Semi-simple Modules

Ashok Kumar Pandey*

Department of Mathematics, Ewing Christian Post Graduate College (An Autonomous College of University of Allahabad, Prayagraj), Allahabad, India *Corresponding Author: Ashok Kumar Pandey, Department of Mathematics, Ewing Christian Post Graduate College (An Autonomous College of University of Allahabad, Prayagraj), Allahabad, India. Received: October 04, 2022 Published: December 13, 2022 © All rights are reserved by Ashok Kumar Pandey.

Abstract

The torsion sub-module of $A \subseteq M$ is denoted by $\sigma(A)$. Since it was proved by Walker [18] that the class of I- pure (J- copure) sequences form a proper class whenever I(J) is closed under homomorphic images (sub-modules) of a R- module M and if I(J) is closed under factors (sub-modules) then for any I- pure (J- copure) sequence $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ if $E \in \pi^{(-1)}(I)$ ($E \in i^{(-1)}(I)$) and hence in this case Walker's I- purity (J- copurity) coincides with the earlier notion of purity. We also study about class of R-modules dual to the modules of B. A sequence $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is I- pure (J- copure) if and only if given $C^{\prime} \le C \in I$, there exists $B' \le B$ such that $B^{\prime} \cong C'$ and $A \cap B^{\prime} = 0$; we consider another notion of purity stronger than the Cohn's purity [13]. If FG denotes the class of all finitely generated R-modules, since, this class is closed under factors. We shall try to give some characterizations of FG-purity and to determine its relationship with the FG-flat modules. We relativist this concept and also relate it with that of finite projectivity of Azumaya [10] with respect to a torsion theory and to study the inter-relationship between these concepts. We also try to consider finite σ -projectivity or (FG, σ)- pure flatness, cyclically σ - pure projectivity and cyclically σ - pure flatness, the concept of locally σ - projectivity and locally σ - splitness and study its inter-relationship with (FG, σ)- purity and semi-simple module.

Keywords: R- Modules; (FG,σ)- Purity; σ- Pure Projective; R-Modules; I- Pure (J- copure; FG-flat Modules; Cyclically σ- Pure Projectivity; σ- Pure Infectivity; Locally σ- Splitness; Semi-Simple Module. Subject classification: 16D99

Introduction

The notion of purity plays an abecedarian part in the theory of abelian groups as well as in module categories. We say that an R-module M is absolutely pure, (respectively regular, flat) with reference to the purity if any short exact sequence with M as the first (respectively second, third) position is pure in the given sense. Now we take a free presentation of N where N is a right R-module and $\bigoplus_{I} R \xrightarrow{\mu} \bigoplus_{I} R \longrightarrow N \longrightarrow 0$.

We take all the sub-matrices associated with μ are of the column finite matrix. The class of all co-kernels of the right R- maps between $\bigoplus J$ R and $\bigoplus I$ R convinced by these sub-matrices is expressed by \mathscr{P} (N). Now we take allrow finite sub-matrices of the matrix and take co-kernels of all left R- maps between $\bigoplus I$ R and $\bigoplus J$ R induced by these sub-matrices and this class of left R – modules is denoted by f(N). An accurate sequence E: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is called τ – pure (\mathfrak{F} - copure) if any torsion (torsion free) module is projective (injective) relative to it. Since $\tau(\mathfrak{F})$ is closed under factors (sub-modules). In this situation Walker's criterion of Co-purity is applicable. The notation of a R – module M is τ –pure projective (\mathfrak{F} - copure injective) if and only if Pext_{τ}(M, A) = 0 (Pext $\mathfrak{F}(A, M) = 0$) for all A \subseteq M. Since, Pext_{τ}(T, A) = 0 for all T $\in \tau$.

The torsion sub-module of $A \subseteq M$ is denoted by σ (A). It's proved by Walker that the class of $f - pure (\mathcal{J} - copure)$ sequence form a proper class when $f(\mathcal{J})$ is closed under homomorphism images (sub-modules) of an R- module M and if $f(\mathcal{J})$ is closed under factors (sub-modules) then for any $f - pure (\mathcal{J} - copure)$ sequence

E: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $E \in \pi^{-1}(f)$ ($E \in i^{-1}(f)$). Therefore, in this case Walker's f – purity (\mathcal{J} – copurity) coincides with the previous notion of purity. We also study about class of R –modules dual to the modules of \mathfrak{B} . A sequence E: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is f – pure (\mathcal{J} – copure) if and only if given $C' \leq C \in f$, there exists $B' \leq B$ such that $B' \cong C'$ and $A \cap B' = 0$; we consider another notion of purity stronger than the Cohn's purity. However, since, this class is closed under factors, if \mathcal{FG} denotes the class of all finitely generated R- modules.

We shall try to give some characterizations of \mathcal{FG} –purity and to determine its relationship with the \mathcal{FG} –flat modules.

An R – module M is called locally projective if given a map g: M \rightarrow B and a finitely generated sub-module F of M, if there exists a map g': M \rightarrow A such that $(\pi og')|F = g|F$, that is

We know that all locally projective modules are flat and this class lies strictly between flat and projective modules. We relate these concepts to \mathcal{FG} – purity which is same as finite splitness with respect to a hereditary torsion theory which is given by a connection of (\mathcal{FG}, σ) – purity with $\tau \mathcal{F}$ – purity (torsion purity) of a left exact torsion radical σ . We also relativize the concept of finite (cyclic) σ – extension and finitely (cyclically) σ –splitness. In this present paper we related the concept of \mathcal{FG} - purity and σ – injectivity and σ – projectivity of R – modules. We also, relate the concept of \mathcal{FG} - purity and semi-simple modules. We observe that the torsion σ – purity of Bhattacharya and Choudhury [11] reduces to usual purity, (\mathcal{FG}, σ) – splitness and cyclic σ – purity becomes purity relative to cyclic modules that is singly (cyclically) σ – pure. We also give the results of the characterization of a Noetherian like condition on the torsion theory.

 τ_1 - Purity coincides with the usual purity (Cohn purity), that to an abelian groups only. In this paper we also try to develop the theory of σ -purity relative to a torsion theory (τ , τ_1) which is weaker than τ -purity but it gives the generalization of usual purity (Cohn purity) [13] and also gives a σ -generalization of regular modules.

Definition

- A R module M is said to be cyclic if and only if there exists an element $m_0 \in M$ such that M = Rm_0 .
- A R module M is said to be finitely generated if and only if there exists a finite generating set X of M.
- A left R module M is said to finitely co-generated if and only if for each set {Ui |i \in I} of submodules Ui of M with $\cap_{i \in I}$ Ui = 0, there exists a finite subset {Ui |i \in I0} that is I0 \subset I and I0 is finite with $\cap_{i \in I}$ Ui = 0. In other words we can say A module M is said to be finitely co-generated if it is co-generated by the family {E(S_{i $i \in I$})} finitely. That's E(M) = $\bigoplus_{i=1}^{n} E(Si)$ where Si \in I, simple modules are not inescapably non- isomorphic.
- An R module M is said to be co-cyclic if it is contained in E(S) for some simple module S, where E(S) is a family of co- generators for each R module M.
- In the commutative illustration $\prod_{M \to N}^{1}$ Where f: A \to B; φ : M \to N, μ : A \to M and g: B \to N aremaps. The pair (φ , g) is said to be the push out of the pair (μ , f) if and only if for every pair (φ' , g') with φ' : M \to X, g': B \to X and ($\varphi' \circ \mu$) = (g'of), there exists a unique map σ : N \to X similar that (σ og) = g'.
- The pair (ϕ, f) is said to be the pullback of the pair (ψ, g) if and only if for every pair (ϕ', f') with $\phi': Y \to M$, $f': Y \to B$ and $(\psi o \phi')$ = (gof '), there exists a unique map $\tau: Y \to A$ Similarly (fo τ) = f 'and $(\phi o \tau) = \phi'$.
- A R module M is said to be finitely presented if there's an exact sequence $M_1 \rightarrow M_0 \rightarrow M \rightarrow$ where M_0 and M_1 are independent modules with finite bases.
- Let R be a ring and M is a left R module, then M is said to flat if for every exact sequence $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ and the converted sequence $0 \rightarrow M \otimes R N' \rightarrow M \otimes R N \rightarrow M \otimes R N''$ $\rightarrow 0$ is exact.
- A ring R is hereditary if and only if every ideal is a projective module.
- If M be a R –module, the sum of all simple sub-modules of M is called the socle of M and it is denoted by s(M) = {x ∈ M|Ann(x) is a finite intersection of maximal right ideals}. That is if x ∈ s(M), then xA is a direct sum of a finite number of simple modules where A is a semi-simple ring.

- A non- zero module S is said to be simple if it has on submodules other than {0} and S. A module is saidto be semi-simple if it is a sum of simple sub-modules.
- A torsion theory is a pair (f, F) of classes of modules satisfying:
 - Hom(T, F) = 0, \forall T \in f and F \in \mathfrak{F}
 - $Hom(L, F) = 0, \forall F \in \mathfrak{F} \Rightarrow L \in f$
 - Hom(T, N) = 0, \forall T \in f \Rightarrow N \in \mathfrak{F}
- The classes & and f are known as torsion free and torsion classes associated with a torsion theory(f, &). A torsion theory (f, &) is said to be hereditary if and only if f is closed under homomorphism images, direct sums, extensions and submodules. Also, & is closed under submodules, direct products, extensions and injective envelopes.
- A left R module P is said to be σ pure projective module if it's projective to relative to every σ – pure epimorphism. That is given any σ – pure exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and a homomorphism f: P \rightarrow C, there exists a map h: P \rightarrow B Corresponding that poh = f where p: B \rightarrow Cbe an on to homomorphism.
- A left R module Q is said to be finitely σ pure injective if it is $(\mathcal{FG}), \sigma$ pure in every pure extension of Q, that is if $0 \rightarrow Q \rightarrow Q' \rightarrow Q' \rightarrow 0$ is a pure exact sequence then it's $(\mathcal{FG}), \sigma$ pure also.Similarly,Q is said to be cyclically σ pure injective if it is cyclically σ pure in every pure extension of it.
- · A sub-module A of an R-module B is called closed if B|A is torsion free and it is called dense if B|A is torsion. Any closed sub-module A of an R-module B is τ –pure.
- · A sub-module $A \subseteq M$ is called f essential if it intersects every torsion sub module of M.

Definition 1.1

A sub-module A of an R-module B is called closed if B|A is torsion free and it is called dense if B|A is torsion. Any unrestricted sub module A of an R-module B is τ -pure.

Definition 1.2

Given a class of modules τ , a sequence E: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is known τ – pure if A is a direct summand of D whenever $A \subseteq D \subseteq B$ and $D|A \in \tau$.

Walker proved that the class of τ – pure sequences form a correct class whenever τ is closed under homomorphism of a R –

81

module M and if τ is closed under factors then for any τ – pure sequence $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, $E \in \pi^{-1}(\tau)$ and hence in this case Walker's τ – purity coincides with the earlier notion.

Proposition 1.3

- If τ is closed under factors also a sequence $E: 0 \to A \to B \to C$ $\to 0$ is τ – pure if and only if given $C' \leq C \in$
 - τ there exists B' \leq B similar that B' \cong C' and A \cap B' = 0.

Definition 1.4

We say that a sub module A is (μ, σ) -pure in an R – module B, if any system of linear equation $\sum r_{ij} x_j = ai$ given by the row finite matrix μ in A, whenever solvable in B in the form $x_j = bi$ for which there are left ideals $D_i \in D$ where D is the Gabriel filter [6] of dense left ideals corresponding to the left exact torsion radical σ , such that $D_j b_j \in A$. The system is also solvable in A that is there are a_j $\in A$, with $\sum r_{ij} a' = a_i$ for each $i \in I$ and $j \in J$; this exactly means that given vectors $(b_j) \in \prod_j B$ and $(a_i) \in \prod_i A$ and $\mu(b_j) = a_i$ With $D_j b_j$ $\in A$ for some $D_i \in D$, there exists $(a_j') \in \prod_i A$ such that $\mu(a_j') = ai$ where the vector $\mu(a_j')$ is obtained by matrix product of the row finite matrix μ and column vector (a_j') . We may rephrase the above condition that a sub module A is (μ, σ) -pure in a R – module B or that B is a (μ, σ) –pure extension of A as follows.

We view μ as mapping \prod_{i} B to \prod_{i} B by left matrix multiplication. Then we have: Theorem 1.5

A sub module A is (μ, σ) –pure in B if and only if $\mu[\prod_{j} B] \cap \prod_{i} A$ $\subseteq \mu[\prod_{i} A]$ whenever B_{j} are sub modules of B containing A such that A is dense in B_{j} .

Proof

Any element of the left hand side is of the form $(a_i)I = \mu((b_j)J) = \sum r_{ij}b_j$ and A is dense in B_j means $B_j|A$ is torsion and hence for each element $(b_j + A) \in B_j|A$, there exists $D_j \in D$ such that $D_j(b_j + A) = 0$ that is $D_i(b_i) \subseteq A$.

The following result corelates (μ, σ) –purity with (M, σ) –purity.

Proposition 1.6

Let $\mu = (R_{ij})$ be a row finite (I × J) matrix where I and J are arbitrary sets. Again a sub module A is (μ, σ) –pure in a module B if and only if the sequence $0 \rightarrow A \rightarrow B \rightarrow B|A \rightarrow 0$; is (M, σ) –pure where $\oplus iR \xrightarrow{\hat{\mu}} \oplus jR \rightarrow M \rightarrow 0$ is exact with μ' given by the matrix μ .

Definition 1.7

A sub module A is τ – pure in a R – module M if and only if given a torsion sub module C of M|A, there exists asubmodule B of M similarly B \cong C and A \cap B = 0.

Definition 1.8

A sub module A of an R – module M is called μ – pure in M where $\mu = (x_{ij})$ if whenever the system of linear equations $\sum r_{ij} x_j = a_{ij}$ $i \in I$ where $ai \in A$ with $D_j(x_j) \subseteq A$ for some $D_j \in D$, it associated with Gabriel filter for left dense ideals, is solvable in M,that is it is solvable in A.

Proposition 1.9

A sub module A of a R – module is σ – pure in M if and only if A is (Cohn)– pure [11] in the closure of A in M.

Proposition 1.10

A sub module A of a R – module M is μ –pure in M if and only if A is M – pure in the closure of A in M where

 $\oplus iR \xrightarrow{\mu} \oplus jR \longrightarrow M \longrightarrow 0 \text{ is exact.}$

Proof

The closure \overline{A} of A is defined by $\overline{A} | A = \sigma(M|A)$. Still, again by Azumaya [10], A is μ -pure in \overline{A} , if A is μ -pure in \overline{A} Likewise the presented a finite system of linear equations in a finite number of variables $\sum r_{ij} b_j = a_{i'}$; i \in I where $a_i \in A$ with $D_j(x_j) \subseteq A$ for some $Dj \in D$, $mj + A \in \sigma(M|A) = \overline{A} | A$. Hence, $mj \in \overline{A}$ as A is pure in \overline{A} there exists $a'_j \in A$ similarly that $\sum r_{ij} a'_j = a_i$, and the system is solvable in A. Conversely, if the given a finite system of linear equations in a finite number of variables $\sum r_{ij} m_j = a_{i'}$, i $\in I$ with $a_i \in A$ and $m_j \in \overline{A}$ then, $m_j + A \in \overline{A} | A = \sigma(M|A)$ there is $D_j \in D$, $D_j(m_j + A) = 0$ that is $D_j(b_j) \subseteq A$ and hence the system is solvable in A and so, A is pure in \overline{A} Hence A is μ -pur in \overline{A} by Azumaya [10] proposition (1).

Definition 1.11

- · A R module C is said to be σ flat if a sub module A is σ pure in an R module B whenever C \cong B|A.
- A sub module A of a R module B is said to be (μ, σ) pure if and only if A $\subseteq A_i \otimes \mu$ pure.
- · We call a sub module A of a R- module B, τ –essential if it intersects every torsion sub module of B.

Proposition 1.12

Every torsion free module is σ – flat and every torsion σ – flat module is flat. Also, every flat module is σ – flatof course.

Proposition 1.13

A sub module A is closed in B if and only if A is τ –pure and τ – essential in B.

Proof

If Ais closed in B then A is τ -pure. Suppose that A \cap B1 = {0} for some B1 \subseteq B and B1 $\in \tau$. But B1 $\subseteq \sigma(B)$ and $\sigma(B) = \cap C$, where C \subseteq B and B/C $\in \tau$ and hence B₁ \subseteq A because B/A $\in \tau$. Thus A is τ -essential.

Conversely, if A is τ -pure and τ -essential in B, if B/A has any torsion sub module C then C \approx B \subseteq B and A \cap B₁ = {0} for some B₁ \subseteq B and B₁ $\in \tau$, thus A cannot be τ -essential. Hence, B/A $\in \tau$

Now we give the inter-relationship with (FG, σ) – purity and semi-simple module.

Proposition 1.14

The exact sequence $0 \to A \to B \to C \to 0$ is τ – pure exact if and only if $0 \to \sigma(A) \to \sigma(B) \to \sigma(C) \to 0$ is a split exact sequence where the maps are restrictions of the above sequence.

Proof

Suppose that the sequence $0 \to A \to B \to C \to 0$ is τ – pure exact. Now we complete the diagram by taking pullback of $j_c: \sigma(C) \to C$ and $\pi: B \to C$.Here, t: K $\to \sigma(B)$; u: $\sigma(A) \to \sigma(B)$; v: $\sigma(B) \to \sigma(C)$; $\alpha: \sigma(C) \to \sigma(B)$; s: $\sigma(B) \to P$.

$$\begin{array}{cccc} & & & & \\ & \downarrow & & \\ 0 \to \sigma(A) \to & \sigma(B) \to \sigma(C) \to 0 \dots \dots \dots \dots \dots (1) \\ & \downarrow & \downarrow & \downarrow & \\ 0 \to & A \to & P \xrightarrow{}_{\lambda} & \sigma(C) \to 0 \dots \dots \dots \dots \dots (2) \\ & \downarrow & \downarrow & \downarrow & \\ 0 \to & A \to & B \to & C \to 0 \dots \dots \dots \dots (3) \end{array}$$

q: P \rightarrow B; j_B: $\sigma(B) \rightarrow B$, i': A \rightarrow P, π ': P $\rightarrow \sigma(C)$; $\lambda: \sigma(C) \rightarrow P$, i: A \rightarrow B, π : B \rightarrow C are the neededhomomorphism. Here s: $\sigma(B) \rightarrow$ P exists as P is a pullback. Put K = ker(v). Now vou = 0 and so, $\sigma(A) \subseteq K$. Since sequence (1) is τ -pure \Rightarrow sequence (2) is τ - Pure because τ -pure sequences form a proper class and hence (2) splits. Take λ : $\sigma(C) \rightarrow P$ such that $\pi' \circ \lambda = 1_{\sigma(C)}$. Now $\lambda(\sigma(C))$ is torsion and so there

is $\alpha: \sigma(C) \to \sigma(B)$ such that $\lambda = \operatorname{son}$. Also, $\operatorname{von} = \pi' \circ (\operatorname{son}) = \pi' \circ \lambda = 1_{\sigma(C)}$ and hence, v is epic and the sequence $0 \to K \rightleftharpoons \sigma(B) \to \sigma(C) \to 0$ splits. But then K is an epimorphic image of $\sigma(B)$ and so, it is torsion. Also, $\pi' \circ (\operatorname{sot}) = 0 \Longrightarrow K \subseteq A$. Hence, $K \subseteq \sigma(A)$ and sequence (3) is separate and exact.

Again, if sequence (3) is disassociate and exact, then given $T \in \tau$, and f: $T \rightarrow C$, Im(f) $\subseteq \sigma(C)$ and also, sequence (1) τ -pure.

Note 1.15

If sequence (1) is τ -pure, so it's exact on sequence (1) and hence, $\sigma(A) = A \cap \sigma(B)$ and $\sigma(B)+A/A = \sigma(B/A)$.

Now we, define τ_c – purity corresponding to the class τ_c of cyclic torsion modules. This purity was firstly studied by Stenstrom [17]. More generally he started with a family ϑ of factors of a projective generator Fand he called the purity $\pi^{-1}(\vartheta)$, further he took the family $\vartheta' = \vartheta \setminus \{F\}$, and considered the relation between $\pi^{-1}(\vartheta)$ and the torsion theory generated by (ϑ') . He also established that:

- σ(M), the torsion submodule corresponding to the above torsion theory is the lowest θ –pure subobject of M such that each f: P → M with P ∈ θ' factors through it.
- L ⊆ M is ϑ pure in M and contains σ(M) if and only if σ (M/L)
 = 0 for all P ∈ ϑ'.

These conditions fully satisfy the case for τ_c – purity, if given the torsion theory(τ , τ ,), we take ϑ = {R} U

(all cyclic torsion modules). Yet the purity is $\pi^{-1}(\tau C)$.

Since, $\pi^{-1}(\tau C) = \pi^{-1}(\{R\} \cup \tau C)$ as R is projective and the generated torsion theory is identical as the original.

We express the set of dense left ideals by \mathcal{D} that's there's left ideal I such that $R/I \in \tau C$. In this case (τ, τ_1) is heritable \mathcal{D} forms a Gabriel filter or a topology Stenstrom) [17].

 $\tau_{c}~$ – Purity coincides with the purity defined by Lambek [16] in case the torsion theory is heritable.

Proposition 1.16

If (τ, τ_1) is heritable again the ensuing conditions are alternative for a sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of left R – modules.

- (i) A is τ_c pure in B.
- (ii) Given $n \in \sigma(C)$, there is $m \in B$ such that Ann(m) = Ann(n) and $\lambda(m) = n$.
- (iii) A is pure in B in the sense of Lambek that is given $m \in B$, and $D \in D$ such that $Dm \subseteq A$, there is $l \in A$ such that D(m - l) = 0.

Note 1.17

For the case of abelian groups and the usual torsion theory, the above purity coincides with the usual purity.

Proposition 1.18

For any class ϑ , the following statements are alternative for any R – module M:

- (i) M is absolutely ϑ pure.
- (ii) M is injective module relative to any sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of left R modules with $C \in \vartheta$.
- (iii) Ext(C, M) = 0 for all $C \in \vartheta$.

(iv) C is $i^{-1}(M)$ – flat for all $C \in \vartheta$.

Proof: (i) \Rightarrow (ii)

$$\begin{array}{cccc} 0 \longrightarrow A \longrightarrow & B \longrightarrow & C \longrightarrow & 0 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow & M \longrightarrow & P \longrightarrow & C \longrightarrow & 0 \end{array}$$

Since, it is given a homomorphism $A \to M$, we complete the diagram by push out. Now (ii) is ϑ – pure and hence homotopy exists, so M is injective relative to any sequence $0 \to A \to B \to C \to 0$ of left R – modules with $C \in \vartheta$.

(ii) \Rightarrow (iii). Given any sequence $0 \rightarrow M \rightarrow P \rightarrow C \rightarrow 0$, in which M is injective relative to it and hence itsplits.

It's that E and $C \in \vartheta$, now we complete the illustration by pullback. Now by the theory of the upper sequence splits and hence there's a homotopy and hence, the given sequence is ϑ – pure.

(ii) \Leftrightarrow (iv). It is egregious.

Now dually we've M is ϑ – copure flat if and only if M is projective with respect to any sequence $0 \rightarrow A \rightarrow B$

 \rightarrow C \rightarrow 0 with A \in ϑ that is if and only if Ext(M, A) = 0 for all A $\in \vartheta$. Now we try to specify τ -pure injective and τ -pure projective modules.

Proposition 1.19

The following statements are equivalent for any R – module M:

(i) M is τ -pure injective.

(ii) $Pext_{r}(N, M) = 0$ for all R -modules N.

- (iii) Ext(F, M) = 0 for all $F \in \tau_1$.
- (iv) M is absolutely τ_1 pure.
- (v) M is injective with respect to closed sub modules.

Proof

 $\begin{array}{l} (i) \Rightarrow (ii) \mbox{ Given any } \tau \mbox{ -pure sequence } 0 \longrightarrow M \longrightarrow L \longrightarrow N \longrightarrow 0, \\ \mbox{ as } M \mbox{ is } \tau \mbox{ -pure injective and so it splits.Hence } Ext(F,M) = 0 \mbox{ for } \\ \mbox{ all } F \in \tau \ _1. \end{array}$

(i) \Rightarrow (ii). $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$(1) $\downarrow \qquad \downarrow \qquad \downarrow$ $0 \rightarrow M \rightleftharpoons P \rightleftharpoons C \rightarrow 0$

Suppose that sequence (1) is a τ -pure sequence and f: A \rightarrow M is given. Now we take pushout, the lowersequence splits and hence M is τ -pure injective.

(ii) \Rightarrow (iii). This statement follows because Ext(F, M) = Pext_{τ} (F, M) for all F $\in \tau_1$.

(iii) \Rightarrow (ii). Again, if Ext(F, M) = 0 then the sequence $0 \rightarrow M \rightarrow N \rightarrow F \rightarrow 0$ splits for all $F \in \tau_1$.

$$0 \qquad 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\sigma(N) = \sigma(N)$$

$$\downarrow \qquad \downarrow \qquad N$$

$$0 \rightarrow M \rightarrow P \rightarrow \qquad N \rightarrow 0 \dots \dots \dots (1)$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \rightarrow K \not \rightleftharpoons P/\sigma(N) \rightarrow N/\sigma(N) \rightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \qquad 0$$

Where, u: M \rightarrow P, π : P \rightarrow N, λ : N $\rightarrow \frac{N}{\sigma(N)}$, λ' : P $\rightarrow \frac{P}{\sigma(N)}$, μ : M \rightarrow K, μ' : K \rightarrow M. i: $\sigma(N) \rightarrow N$, j: $\sigma(N) \rightarrow$ P and q: P/ $\sigma(N) \rightarrow$ K.

It is given that the sequence (1) is τ –pure and we've j: $\sigma(N) \rightarrow P$ which is a monomorphism. Now, $N/\sigma(N) \in$

 τ_1 and hence, the right perpendicular sequence $0 \rightarrow \sigma(N) \rightarrow N \rightarrow N/\sigma(N) \rightarrow 0$ is τ -pure and hence, $\pi' \in \pi^{-1}(\tau)$ and so the epimorphism π' splits. Now we considering the perpendicular exact sequence, the identity map above sureties that the square is a pullback which in turn guarantees that μ is an isomorphism again if $\mu' = \mu^{-1}$, then $\mu'o(qo\lambda')o u = (\mu'oq)o(u'o \mu) = \mu'o\mu = 1$ and hence, the upper sequence splits also and so, Pext_r (N, M) = 0 for all R -modules N.

(iii) \Leftrightarrow (iv) \Leftrightarrow (v) It follows from the previous proposition by taking $\vartheta = \tau_1$.

Note 1.20

 τ_1 – purity arises in the hypothesis of torsion free covers (M. L. Teply and J. S. Golan [18]).

Proposition 1.21

If for any module M, $M/\sigma(M)$ is projective, also M is τ –pure projective. Again, for every τ –pure projective module M, $M/\sigma(M)$ is a projective module handed every torsion free module is a factor of a projective torsion free module.

Conclusion

In this paper we consider an another notion of purity stronger than the Cohn's purity [13]. If \mathcal{FG} denotes the class of all finitely generated R –modules. Since, this class is closed under factors. We shall give some characterizations of \mathcal{FG} –purity and to determine its relationship with the \mathcal{FG} –flat modules. We relativize this concept and also relate it with that of finite projectivity of Azumaya [10] with reference to a torsion theory and to study the inter-relationship between these concepts. We also consider finite σ –projectivity or (FG, σ) – pure flatness, cyclically σ – pure projectivity and cyclically σ – pure flatness, the concept of locally σ – projectivity and locally σ – splitness and study its inter- relationship with (FG, σ) – purity and semi-simple module. These relationships are very use-full for further its related works in ring and modules.

Citation: Ashok Kumar Pandey. "(FG, σ) – Purity and Semi-simple Modules". Acta Scientific Computer Sciences 5.1 (2023): 79-85.

84

Bibliography

- Ashok Kumar Pandey. "σ-Projectivity and σ-Semi- Simplicity in modules". *International Research Journal of Pure Algebra* 11.6 (2021): 08-14.
- 2. Ashok Kumar Pandey. "Divisibility and Co-divisibility in modules". *International Journal of Research in Computer applications and Robotics* 9.5 (2021): 12-22.
- Ashok Kumar Pandey. "T-Purity and F-Co-purity in modules". Journal of Engineering Mathematics and statistics 5.1 (2021): 74 - 84.
- Ashok Kumar Pandey. "σ-Purity and σ-Regular rings and modules". *International Research Journal of Pure Algebra* 10.8 (2020): 26-31.
- Ashok Kumar Pandey. "(FG, σ)-Pure flatness and locally σ-projectivity in modules". Sambodhi Journal (UGC Care Journal) 43.2 (2020): 240-244.
- Ashok Kumar Pandey. "Purity Relative to a Cyclic Module". *International Journal of Statistics and Applied Mathematics* 5.3 (2020): 55-58.
- 7. Ashok Kumar Pandey. "Some problems in ring theory". Ph. D. thesis, University of Allahabad, (2003).
- Ashok Kumar Pandey and M Pathak. "M-Purity and Torsion Purity in Modules". *International Journal of Algebra* 7.9 (2013): 421-427.
- Ashok Kumar Pandey and M Pathak. "Torsion Purity in Ring and Modules". *International Journal of Algebra* 7.8 (2013): 391-398.
- Garo Azumaya. "Finite splitness and finite projectivity". *Journal of Algebra* 106 (1972): 114-134.
- 11. BB Bhattacharyya and DP Chaudhury. "Purities Relative to a Torsion Theory". *Indian Journal of Pure and Applied Mathematics* 14.4 (1983): 554-564.
- 12. D P Chaudhury. "Relative Flatness via Stenstrom's Purity". Indian Journal of Pure and Applied Mathematics 15.2 (1984): 131-134.

- PM Cohn. "Free Products of Associative Rings". Math. Z., 71 (1959): 380-398.
- D P Choudhury and K Tewari. "Torsion Purities, Cyclic quasiprojectives and Co cyclic Co purity. Commn. in Algebra". 7 (1979): 1559- 1572.
- FW Anderson and KR Fuller. "Rings and Categories of Modules". 2nd Edition, Springer- Verlag, New York, (1992).
- J Lambek. "Torsion theories, additive semantics and rings quotients, lecture". Notes in Mathematics, No. 177, Springer Verlag, (1971).
- 17. B Stenstrom. "Pure sub modules". *Mathematics* 7 (1967): 159-171.
- ML Teply and JS Golan. "Torsion free covers". *Israel Journal of Mathematics* 15 (1973): 237-256.
- 19. R B Warfield Jr. "Purity and algebraic compactness for modules". *Pacific Journal of Mathematics* 28 (1969): 699-719.

85