
Acta Scientific COMPUTER SCIENCES

 Volume 4 Issue 12 December 2022

A Multi-hyperplane Separation Method to Train Shallow Classifiers

Ákos Hajnal1,2*
1Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research
Network (ELKH), Laboratory of Parallel and Distributed Systems, Hungary
2Óbuda University, John von Neumann Faculty of Informatics, Hungary

*Corresponding Author: Ákos Hajnal, Institute for Computer Science and Control
(SZTAKI), Eötvös Loránd Research Network (ELKH), Laboratory of Parallel and
Distributed Systems, Hungary.

Research Article

Received: September 23, 2022

Published: November 08, 2022
© All rights are reserved by Ákos Hajnal.

Abstract
This paper presents a novel approach to train classifiers implemented as a shallow neural network. The proposed solution is

based on the original Perceptron algorithm but extends to the multi-hyperplane case. Consequently, it allows of solving not only
linearly separable problems. Besides simplicity, the advantage of the method is its tolerance to imbalanced data, which can occur in
practice. The applicability of the method has been demonstrated on several artificial and on real-life datasets.

Keywords: Machine Learning; Artificial Neural Networks; Shallow Neural Network; Classification; Perceptron; Multi-Hyperplane
Separation; Mistake-Driven Algorithm

Abbreviations

AI: Artificial Intelligence; ANN: Artificial Neural Network; CNN:
Convolutional Neural Network; ML: Machine Learning; SGD:
Stochastic Gradient Descent

Introduction

Use of Artificial Neural Networks (ANN) is a common means
to solve various tasks in Machine Learning (ML). Variants of the
(Stochastic) Gradient Descent (SGD)-based learning algorithms
have already proved their applicability and efficiency in various
fields since the Backpropagation [1,2] that can also be used to train
deep neural networks and Convolutional Neural Networks (CNNs).

Although the results achieved are beyond question, AI experts
often face inherent problems when designing and training
neural networks. Beyond technical issues (finding the proper
hyperparameters, data normalization, data balancing, vanishing/
exploding gradients, local optimums, regularization, determining
loss functions), the main concern with such “black-box” models

produced by general optimization techniques is the lack of
interpretability, trust, and uncertainty in robustness (e.g., [3]).

Another main approach to training neural networks is based on
a geometrical perspective. The Perceptron [4] and Support Vector
Machines (SVM) [5] are prominent examples for such a concept.
Neurons can be considered and treated as hyperplanes, which need
to be “properly” aligned, crossing between points representing
data in a multi-dimensional space.

Classification in supervised learning categorizes a set of data
into classes. Each data in the training set is explicitly labelled with a
discrete value corresponding to a class (or category) that it belongs
to. Binary classification means a classification task that has only
two class labels: “positive” and “negative”.

The geometrical approach to classification can be interpreted as
separability problems. The Perceptron algorithm [6] is applicable
to find a hyperplane separating positive and negative data points;
SVM computes such a hyperplane with maximal margin. A notable

Citation: Ákos Hajnal. “A Multi-hyperplane Separation Method to Train Shallow Classifiers". Acta Scientific Computer Sciences 4.12 (2022): 02-07.

advantage of these methods, besides their clear interpretation, is
that they are concerned with the width of the gap and shape of
separation surface (marked out by supports), and less influenced
by the volumes of data points falling farther. It results in better
tolerance to imbalanced data that can occur in practice.

When the data is not linearly separable, single-hyperplane
methods are not applicable [7] but try to find approximate
solutions [9]. SVMs use feature space mapping (“kernel trick”) to
avoid this problem [8].

The paper proposes a novel heuristic to separate classes of
data with several hyperplanes, by training neurons in a shallow
neural network. It can be considered as an extension of the original
Perceptron algorithm to the multi-neuron case, but keeping its
simplicity, tolerance to imbalanced data, also the potential for
application in parallel training (e.g., in “extreme classification”
[10]). We provide empirical validation for convergence, however,
without a formal proof or guarantee for finite-step termination.

The paper is structured as follows. In Section 5, we introduce
the architecture of a two-layer neural network and then the method
how to train weights and biases of the neurons. In Section 6, we
present empirical results of the proposed method on examples and
on a larger dataset. Finally, Section 7 concludes the paper.

Materials and Methods

In this section, we first define the neural network architecture
used for binary classification, enumerating specialties (activation
function, fixed output neuron concept), and providing a geometrical
interpretation. Then, we present the training method applicable to
determine hidden layer neuron weights and biases.

Shallow neural networks with a single output neuron

Neurons in artificial neural networks perform a simple
computation: z = w·x+b (where w is the weights vector, x is the
input, · is the dot product operator, and b is the bias of the neuron),
which value is transformed further by a (nonlinear) activation
function: a(z) (e.g., ReLU, Sigmoid, Tanh, Signum, Step) to produce
the final the output of the neuron.

Shallow neural networks consist of three layers: the input
layer that represents the different fields of a single input (called

features) but without any neuron in it; the hidden layer, contains
a number of, let us name it: n, neurons in it; and finally the output
layer contains a single neuron (in case of binary classification) that
produces the result (prediction) of the entire neural network. All
input features are connected to all hidden layer neurons, and all
hidden layer neuron outputs are connected to the output neuron,
respectively (fully connected/dense, feedforward network).

Figure 1: Shallow neural network with a single output neuron.

From a geometrical point of view, a neuron directly corresponds
to a hyperplane H (defined by equation: w·x+b=0) in a multi-
dimensional space, where the dimension is defined by the size of
the input (x). For this reason, we shall use terms “neurons” and
“hyperplanes” interchangeably in the rest of the paper. Value z
computed by the neuron for input x is a value proportional to the
signed distance of point x from H, that is, the sign of z indicates that
in which half-space the given point lies wrt. H.

We will use the Step function as activation function (a(z)=1,
if z>0, 0 otherwise) in every neuron throughout this paper.
Considering the hidden layer, the hidden layer therefore represents
a mapping of every input data x to a bit-vector of size n. The ith bit is
1 if x lies on the positive side of Hi corresponding to the ith neuron
(defined by normal vector w), or 0, otherwise. This bit-vector can
be considered as the coordinates of a vertex of an n-dimensional
unit hypercube (n-cube). From this perspective, the hidden layer
corresponds to a mapping from input space points to hypercube
vertices. Such a mapping is illustrated in figure 2.a, assuming three

03

A Multi-hyperplane Separation Method to Train Shallow Classifiers

Citation: Ákos Hajnal. “A Multi-hyperplane Separation Method to Train Shallow Classifiers". Acta Scientific Computer Sciences 4.12 (2022): 02-07.

hidden layer neurons (n=3). White/black colored nodes illustrate
vertices onto which (one or more) positive/negative inputs had
been mapped, respectively; gray ones represent vertices with no
data mapped to it at all (undefined, don’t care).

Figure 2: a) n-cube with positive (white)/negative (black)/
undefined (gray) vertices. b) n-cube with horizontally aligned

main diagonal.

If there exist a number of n hyperplanes such that, with a
proper alignment, they can realize a mapping to positive and
negative vertices of the n-cube that are linearly separable, the
neural network can accurately classify the series of data. The goal
of the training process is thus to determine such hyperplanes
(consequently, neuron weights and biases).

Unfortunately, in general, it is not known how many hidden
neurons we will need at minimum (optimum) to solve a specific
problem; therefore, n remains a hyperparameter.

Furthermore, as training hidden layer neurons and the output
neuron simultaneously is a difficult problem, we fix the hyperplane
corresponding to the output neuron to a specific alignment, and
use another hyperparameter, referred to as: k (0< k ≤n, k∈ℤ),
that determines its offset from the origin. We set all the weights
of the output neuron to constant 1 and the bias value to: -k + 0.5.
Geometrically, such a hyperplane is perpendicular to the main
diagonal, and to see where it slices the hypercube, let us consider
figure 2.b. It shows the same hypercube in figure 2.a but with
rotated main diagonal (horizontal).

If k=1, all vertices except the origin are on the positive side
of the hyperplane of the output neuron; if k=2, the origin and

vertices corresponding to coordinates: (1,0,0), (0,1,0), (0,0,1) get
to the negative half-space, and so on. Considering the individual
coordinates as “votes” (0: “no”, 1: “yes”), k defines a “voting rule”,
where hidden layer neurons represent voters (with equal voting
right). k=1 means that a single upvote is enough to judge positively
(predict 1); in the case of k=n, a single downvote is enough to decide
negatively (veto); and assuming odd n, k=(n+1)/2 corresponds to
the majority rule. This alignment can be applied in any dimension
n.

The nkPerceptron heuristic

At given hyperparameters, n and k, the heuristic presented in this
section aims at determining hidden layer hyperplanes, iteratively,
using a method similar to the original Perceptron algorithm. (At
values n=1 and k=1, it directly reduces to it.) It follows the same
mistake-driven update concept: on wrong predictions, input
features (vector) are added to or subtracted from neuron weights,
depending on whether it was a false negative or a false positive
prediction, respectively.

Having multiple hidden layer neurons, the identification of
which neuron(s) are to update is not straightforward. As an
example, let us have 10 neurons in the hidden layer and voting rule:
“5 votes to pass” (n=10, k=5). Assume that for a positive sample
we get four upvotes and six downvotes, so the prediction will be
false negative. We known that at least one of the six downvoters is
corrupt, but we don’t know which one(s).

We may update all the neurons voted (seemingly) incorrectly,
but it has the risk that we update also ones that worked correctly.
We may select only one and leave potential further updates for
later iterations. We chose the latter option.

It is also non-trivial, if there is more than one incorrect vote,
which voter to select. We found no straightforward answer to this
question, and we decided to choose: the one that needs the least
update, i.e., the hyperplane nearest to the input on the wrong side.
Intuitively, this decision was motivated by “stability” reasons.

Finally, we note that that instead of computing Euclidean
distances, we used simply the dot product value (w·x+b). The
reason was empirical: we experienced faster convergence in terms
of iterations (and in in computation time).

The pseudo code of the method is shown below:

04

A Multi-hyperplane Separation Method to Train Shallow Classifiers

Citation: Ákos Hajnal. “A Multi-hyperplane Separation Method to Train Shallow Classifiers". Acta Scientific Computer Sciences 4.12 (2022): 02-07.

Inputs:

training_set: [(x1,y1), (x2,y2), …,(xT,yT)]: xi∈ℝd, yi∈{+1,-1}

N: hidden layer size

K: voting threshold (1<K≤N)

E: number of epochs to run

Globals:

W: matrix of hidden layer neuron weights [w1, w2, …, wN], all
initialized to 0

b: vector of hidden layer neurons biases [b1, b2, …, bN], all
initialized to 0

The algorithm runs for E epochs (line 1). For each input data
we get its features as a vector (xi) and its label, with value: yi=+1:
if positive, yi =-1: if negative (line 2). One may consider shuffling
training set before each epoch. All weights and biases of the
hidden layer neurons are initialized to 0. If there is uninitialized
neuron, we assign the input data as weights and label +1/-1 as
bias correspondingly, then we take the next input (lines 3–6). We
calculate the predictions of the hidden layer (line 7). We count
positive votes (line 8), and if the result of the voting is correct
(≥k positive), we continue with next sample without any update
of the network (lines 9–10). Note that we do not use activation
function in the hidden layer, but implicitly infer from the sign of
the dot product (wix+b). Also, we count positive-negative votes
without using an output neuron. In case of false positive or false
negative predications, we multiply hidden layer outputs by +1 or
-1 correspondingly to the input label. Consequently, all “incorrect”
outputs will be negative (line 11). Finally, we select the neuron
that produces the largest negative value (minimal absolute valued
negative) (line 12), and update its weights and bias with the input
and the label (lines 13–14).

Results and Discussion

In this section, we evaluate the proposed algorithm on some
simple and on some non-trivial problems. First, we present
artificially created datasets, which carry specific challenges, then
we try to apply the method on a real-life dataset, namely, on the
MNIST dataset [11].

As mentioned earlier, the optimal values of hyperparameters of
n and k for a given problem are difficult to determine in general. In
the following examples, we use the minimum values we (humans)
could see, compute, or guess in advance to challenge the heuristic.

The first example is the classical XOR problem, as shown in
figure 3.a (top), which is not solvable by a single Perceptron. The
problem can however be solved with two hidden layer neurons.
The heuristic correctly finds a solution (in 19 epochs, with four
training data elements) with hyperparameters: n=2 and k=1. The
results are illustrated in figure 3.b (bottom), where we can see the
how data points are mapped onto the two-dimensional unit square
by two hyperplanes, and how they are separated by the output
neuron corresponding to value k=1.

In figure 3.b we can see the “XOR cube problem”. This problem
might be challenging even for humans to see that it can be solved
with three hidden layer neurons (there are more than one solution,
with different orientations). The heuristic successfully finds a
solution for this problem as well (in 38 epochs, 8 input data).

Figure 3: a) XOR problem. b) XOR cube

05

A Multi-hyperplane Separation Method to Train Shallow Classifiers

Citation: Ákos Hajnal. “A Multi-hyperplane Separation Method to Train Shallow Classifiers". Acta Scientific Computer Sciences 4.12 (2022): 02-07.

In the following examples, the challenge is to find hyperplanes
between positive and negative point sets (represented, surrounded
by white and black squares) with a narrow gap between them, as
illustrated in figure 4. Boxes were 10 unit wide, the gap was 1 unit
wide, and we generated 1,000 input data, with appropriate labels
in the corresponding boxes. The method finds the appropriate
hyperplanes in cases a) (with hyperparameters: n=2, k=2) and b)
(with hyperparameters: n=4, k=4), but fails for case c).

The latter case happened because, using two hyperplanes (one
vertically, one horizontally, crossing the middle point) we obtain
a mapping that just results in the XOR problem (but with points
instead of boxes, as in Figure 3.a), which would require another
shallow network to solve, and so the whole problem cannot be
solved with a single shallow network.

We also note, narrowing the gap in examples 4.a and 4.b, the
algorithm requires more and more iterations to find the proper
hyperplanes. The increase of iterations can also be observed at
applying the Perceptron algorithm on linearly separable problems
with small gaps.

Figure 4: a) L-shape. b) white-in-the-middle. c) “evil” XOR
problem (failed).

Finally, we used the MNIST dataset (containing 70 thousand
input data, 28x28 pixel grayscale images of handwritten digits)
to train ten individual neural networks, each trying to recognize a
specific digit (e.g., is it 7 or some other digit?). We used n=30 hidden
layer neurons and k=15 output neuron value. The training was
successful in all the cases, reaching 100% accuracy on the training
set (in about 120 epochs in the worst case). In figure 5, we show
the accuracy improvement over epochs of the individual trainings,
where label “Cat0” refers to the network trying to recognize digit
0, “Cat1” for digit 1, etc. In the chart we can see learning curves
similar to the ones we would experience at other machine learning
tasks, and they show convergence.

Figure 5: Accuracy [%] vs. epoch charts of individual neural
networks learning specific digits.

Conclusion

This paper presented a non-SGD-based machine learning
method applicable to train shallow neural networks that can be
used classification problems. The proposed solution build on the
original idea of the Perceptron algorithm but extends it to the multi-
hyperplane separation case. The main advantage of this heuristic
beyond its simplicity is that it tolerates imbalanced datasets. The
effectiveness of the method has been demonstrated on several
non-trivial cases, including artificial ones and a real-life dataset.

Regularization, that is, how to improve the method to perform
accurately on the test data as well (not seen during training), is out
of the scope in this paper, and serves as a future work.

Conflict of Interest

The author declares that there is no financial or any other
conflict of interest.

Bibliography

1. Robbins H and Monro S. “A Stochastic Approximation Method”.
The Annals of Mathematical Statistics 22.3 (1951): 400-407.

2. Haskell B C. “The Method of Steepest Descent for Non-linear
Minimization Problems”. Quarterly of Applied Mathematics 2.3
(1944): 258-261.

3. Rumelhart D., et al. “Learning representations by back-propa-
gating errors”. Nature 323 (1986): 533-536.

4. Su J., et al. “One pixel attack for fooling deep neural networks”.
IEEE Transactions on Evolutionary Computation 23.5 (2019):
828-841.

06

A Multi-hyperplane Separation Method to Train Shallow Classifiers

Citation: Ákos Hajnal. “A Multi-hyperplane Separation Method to Train Shallow Classifiers". Acta Scientific Computer Sciences 4.12 (2022): 02-07.

https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://www.jstor.org/stable/43633461
https://www.jstor.org/stable/43633461
https://www.jstor.org/stable/43633461
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://arxiv.org/abs/1710.08864
https://arxiv.org/abs/1710.08864
https://arxiv.org/abs/1710.08864

5. Rosenblatt F. “The perceptron: A probabilistic model for in-
formation storage and organization in the brain”. Psychology
Review 65 (1958): 386-407.

6. Cortes C and Vapnik V. “Support-vector networks”. Machine
Learning 20.3 (1995): 273-297.

7. Rosenblatt F. “Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms”. Spartan Books, Washington,
D.C., (1962).

8. Minsky ML and Papert SA. “Perceptrons”. MIT Press, Cam-
bridge, MA, (1969).

9. Schölkopf B and Smola A. “Learning with Kernels”. MITPress,
Cambridge, MA, (2002).

10. Gallant S I. “Perceptron-based learning algorithms”. IEEE
Transactions on Neural Networks 1.2 (1990): 179-191.

11. Varma M. “Extreme classification”. Communications of the ACM
62.11 (2019): 44-45.

12. LeCun Y., et al. “The MNIST dataset of handwritten digits”.
(1999).

07

A Multi-hyperplane Separation Method to Train Shallow Classifiers

Citation: Ákos Hajnal. “A Multi-hyperplane Separation Method to Train Shallow Classifiers". Acta Scientific Computer Sciences 4.12 (2022): 02-07.

https://psycnet.apa.org/record/1959-09865-001
https://psycnet.apa.org/record/1959-09865-001
https://psycnet.apa.org/record/1959-09865-001
https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=neurodynamics1962rosenblatt.pdf
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=neurodynamics1962rosenblatt.pdf
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=neurodynamics1962rosenblatt.pdf
https://www.researchgate.net/publication/5569039_Perceptron-based_learning_algorithms
https://www.researchgate.net/publication/5569039_Perceptron-based_learning_algorithms
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

	_GoBack
	OLE_LINK1

