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Abstract
This paper presents a novel approach to train classifiers implemented as a shallow neural network. The proposed solution is 

based on the original Perceptron algorithm but extends to the multi-hyperplane case. Consequently, it allows of solving not only 
linearly separable problems. Besides simplicity, the advantage of the method is its tolerance to imbalanced data, which can occur in 
practice. The applicability of the method has been demonstrated on several artificial and on real-life datasets.
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Introduction

Use of Artificial Neural Networks (ANN) is a common means 
to solve various tasks in Machine Learning (ML). Variants of the 
(Stochastic) Gradient Descent (SGD)-based learning algorithms 
have already proved their applicability and efficiency in various 
fields since the Backpropagation [1,2] that can also be used to train 
deep neural networks and Convolutional Neural Networks (CNNs).

Although the results achieved are beyond question, AI experts 
often face inherent problems when designing and training 
neural networks. Beyond technical issues (finding the proper 
hyperparameters, data normalization, data balancing, vanishing/
exploding gradients, local optimums, regularization, determining 
loss functions), the main concern with such “black-box” models 

produced by general optimization techniques is the lack of 
interpretability, trust, and uncertainty in robustness (e.g., [3]).

Another main approach to training neural networks is based on 
a geometrical perspective. The Perceptron [4] and Support Vector 
Machines (SVM) [5] are prominent examples for such a concept. 
Neurons can be considered and treated as hyperplanes, which need 
to be “properly” aligned, crossing between points representing 
data in a multi-dimensional space.

Classification in supervised learning categorizes a set of data 
into classes. Each data in the training set is explicitly labelled with a 
discrete value corresponding to a class (or category) that it belongs 
to. Binary classification means a classification task that has only 
two class labels: “positive” and “negative”.

The geometrical approach to classification can be interpreted as 
separability problems. The Perceptron algorithm [6] is applicable 
to find a hyperplane separating positive and negative data points; 
SVM computes such a hyperplane with maximal margin. A notable 
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advantage of these methods, besides their clear interpretation, is 
that they are concerned with the width of the gap and shape of 
separation surface (marked out by supports), and less influenced 
by the volumes of data points falling farther. It results in better 
tolerance to imbalanced data that can occur in practice. 

When the data is not linearly separable, single-hyperplane 
methods are not applicable [7] but try to find approximate 
solutions [9]. SVMs use feature space mapping (“kernel trick”) to 
avoid this problem [8]. 

The paper proposes a novel heuristic to separate classes of 
data with several hyperplanes, by training neurons in a shallow 
neural network. It can be considered as an extension of the original 
Perceptron algorithm to the multi-neuron case, but keeping its 
simplicity, tolerance to imbalanced data, also the potential for 
application in parallel training (e.g., in “extreme classification” 
[10]). We provide empirical validation for convergence, however, 
without a formal proof or guarantee for finite-step termination. 

The paper is structured as follows. In Section 5, we introduce 
the architecture of a two-layer neural network and then the method 
how to train weights and biases of the neurons. In Section 6, we 
present empirical results of the proposed method on examples and 
on a larger dataset. Finally, Section 7 concludes the paper.

Materials and Methods

In this section, we first define the neural network architecture 
used for binary classification, enumerating specialties (activation 
function, fixed output neuron concept), and providing a geometrical 
interpretation. Then, we present the training method applicable to 
determine hidden layer neuron weights and biases. 

Shallow neural networks with a single output neuron

Neurons in artificial neural networks perform a simple 
computation: z = w·x+b (where w is the weights vector, x is the 
input, · is the dot product operator, and b is the bias of the neuron), 
which value is transformed further by a (nonlinear) activation 
function: a(z) (e.g., ReLU, Sigmoid, Tanh, Signum, Step) to produce 
the final the output of the neuron.

Shallow neural networks consist of three layers: the input 
layer that represents the different fields of a single input (called 

features) but without any neuron in it; the hidden layer, contains 
a number of, let us name it: n, neurons in it; and finally the output 
layer contains a single neuron (in case of binary classification) that 
produces the result (prediction) of the entire neural network. All 
input features are connected to all hidden layer neurons, and all 
hidden layer neuron outputs are connected to the output neuron, 
respectively (fully connected/dense, feedforward network). 

Figure 1: Shallow neural network with a single output neuron.

From a geometrical point of view, a neuron directly corresponds 
to a hyperplane H (defined by equation: w·x+b=0) in a multi-
dimensional space, where the dimension is defined by the size of 
the input (x). For this reason, we shall use terms “neurons” and 
“hyperplanes” interchangeably in the rest of the paper. Value z 
computed by the neuron for input x is a value proportional to the 
signed distance of point x from H, that is, the sign of z indicates that 
in which half-space the given point lies wrt. H.

We will use the Step function as activation function (a(z)=1, 
if z>0, 0 otherwise) in every neuron throughout this paper. 
Considering the hidden layer, the hidden layer therefore represents 
a mapping of every input data x to a bit-vector of size n. The ith bit is 
1 if x lies on the positive side of Hi corresponding to the ith neuron 
(defined by normal vector w), or 0, otherwise. This bit-vector can 
be considered as the coordinates of a vertex of an n-dimensional 
unit hypercube (n-cube). From this perspective, the hidden layer 
corresponds to a mapping from input space points to hypercube 
vertices. Such a mapping is illustrated in figure 2.a, assuming three 
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hidden layer neurons (n=3). White/black colored nodes illustrate 
vertices onto which (one or more) positive/negative inputs had 
been mapped, respectively; gray ones represent vertices with no 
data mapped to it at all (undefined, don’t care).

Figure 2: a) n-cube with positive (white)/negative (black)/ 
undefined (gray) vertices. b) n-cube with horizontally aligned 

main diagonal.

If there exist a number of n hyperplanes such that, with a 
proper alignment, they can realize a mapping to positive and 
negative vertices of the n-cube that are linearly separable, the 
neural network can accurately classify the series of data. The goal 
of the training process is thus to determine such hyperplanes 
(consequently, neuron weights and biases). 

Unfortunately, in general, it is not known how many hidden 
neurons we will need at minimum (optimum) to solve a specific 
problem; therefore, n remains a hyperparameter. 

Furthermore, as training hidden layer neurons and the output 
neuron simultaneously is a difficult problem, we fix the hyperplane 
corresponding to the output neuron to a specific alignment, and 
use another hyperparameter, referred to as: k (0< k ≤n, k∈ℤ), 
that determines its offset from the origin. We set all the weights 
of the output neuron to constant 1 and the bias value to: -k + 0.5. 
Geometrically, such a hyperplane is perpendicular to the main 
diagonal, and to see where it slices the hypercube, let us consider 
figure 2.b. It shows the same hypercube in figure 2.a but with 
rotated main diagonal (horizontal).

If k=1, all vertices except the origin are on the positive side 
of the hyperplane of the output neuron; if k=2, the origin and 

vertices corresponding to coordinates: (1,0,0), (0,1,0), (0,0,1) get 
to the negative half-space, and so on. Considering the individual 
coordinates as “votes” (0: “no”, 1: “yes”), k defines a “voting rule”, 
where hidden layer neurons represent voters (with equal voting 
right). k=1 means that a single upvote is enough to judge positively 
(predict 1); in the case of k=n, a single downvote is enough to decide 
negatively (veto); and assuming odd n, k=(n+1)/2 corresponds to 
the majority rule. This alignment can be applied in any dimension 
n.

The nkPerceptron heuristic

At given hyperparameters, n and k, the heuristic presented in this 
section aims at determining hidden layer hyperplanes, iteratively, 
using a method similar to the original Perceptron algorithm. (At 
values n=1 and k=1, it directly reduces to it.) It follows the same 
mistake-driven update concept: on wrong predictions, input 
features (vector) are added to or subtracted from neuron weights, 
depending on whether it was a false negative or a false positive 
prediction, respectively.

Having multiple hidden layer neurons, the identification of 
which neuron(s) are to update is not straightforward. As an 
example, let us have 10 neurons in the hidden layer and voting rule: 
“5 votes to pass” (n=10, k=5). Assume that for a positive sample 
we get four upvotes and six downvotes, so the prediction will be 
false negative. We known that at least one of the six downvoters is 
corrupt, but we don’t know which one(s). 

We may update all the neurons voted (seemingly) incorrectly, 
but it has the risk that we update also ones that worked correctly. 
We may select only one and leave potential further updates for 
later iterations. We chose the latter option. 

It is also non-trivial, if there is more than one incorrect vote, 
which voter to select. We found no straightforward answer to this 
question, and we decided to choose: the one that needs the least 
update, i.e., the hyperplane nearest to the input on the wrong side. 
Intuitively, this decision was motivated by “stability” reasons.

Finally, we note that that instead of computing Euclidean 
distances, we used simply the dot product value (w·x+b). The 
reason was empirical: we experienced faster convergence in terms 
of iterations (and in in computation time).

The pseudo code of the method is shown below: 
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Inputs:

training_set: [(x1,y1), (x2,y2), …,(xT,yT)]: xi∈ℝd, yi∈{+1,-1} 

N: hidden layer size 

K: voting threshold (1<K≤N)

E: number of epochs to run

Globals:

W: matrix of hidden layer neuron weights [w1, w2, …, wN], all 
initialized to 0

b: vector of hidden layer neurons biases [b1, b2, …, bN], all 
initialized to 0

The algorithm runs for E epochs (line 1). For each input data 
we get its features as a vector (xi) and its label, with value: yi=+1: 
if positive, yi =-1: if negative (line 2). One may consider shuffling 
training set before each epoch. All weights and biases of the 
hidden layer neurons are initialized to 0. If there is uninitialized 
neuron, we assign the input data as weights and label +1/-1 as 
bias correspondingly, then we take the next input (lines 3–6). We 
calculate the predictions of the hidden layer (line 7). We count 
positive votes (line 8), and if the result of the voting is correct 
(≥k positive), we continue with next sample without any update 
of the network (lines 9–10). Note that we do not use activation 
function in the hidden layer, but implicitly infer from the sign of 
the dot product (wix+b). Also, we count positive-negative votes 
without using an output neuron. In case of false positive or false 
negative predications, we multiply hidden layer outputs by +1 or 
-1 correspondingly to the input label. Consequently, all “incorrect” 
outputs will be negative (line 11). Finally, we select the neuron 
that produces the largest negative value (minimal absolute valued 
negative) (line 12), and update its weights and bias with the input 
and the label (lines 13–14).

Results and Discussion

In this section, we evaluate the proposed algorithm on some 
simple and on some non-trivial problems. First, we present 
artificially created datasets, which carry specific challenges, then 
we try to apply the method on a real-life dataset, namely, on the 
MNIST dataset [11].

As mentioned earlier, the optimal values of hyperparameters of 
n and k for a given problem are difficult to determine in general. In 
the following examples, we use the minimum values we (humans) 
could see, compute, or guess in advance to challenge the heuristic.

The first example is the classical XOR problem, as shown in 
figure 3.a (top), which is not solvable by a single Perceptron. The 
problem can however be solved with two hidden layer neurons. 
The heuristic correctly finds a solution (in 19 epochs, with four 
training data elements) with hyperparameters: n=2 and k=1. The 
results are illustrated in figure 3.b (bottom), where we can see the 
how data points are mapped onto the two-dimensional unit square 
by two hyperplanes, and how they are separated by the output 
neuron corresponding to value k=1.

In figure 3.b we can see the “XOR cube problem”. This problem 
might be challenging even for humans to see that it can be solved 
with three hidden layer neurons (there are more than one solution, 
with different orientations). The heuristic successfully finds a 
solution for this problem as well (in 38 epochs, 8 input data).

Figure 3: a) XOR problem. b) XOR cube
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In the following examples, the challenge is to find hyperplanes 
between positive and negative point sets (represented, surrounded 
by white and black squares) with a narrow gap between them, as 
illustrated in figure 4. Boxes were 10 unit wide, the gap was 1 unit 
wide, and we generated 1,000 input data, with appropriate labels 
in the corresponding boxes. The method finds the appropriate 
hyperplanes in cases a) (with hyperparameters: n=2, k=2) and b) 
(with hyperparameters: n=4, k=4), but fails for case c). 

The latter case happened because, using two hyperplanes (one 
vertically, one horizontally, crossing the middle point) we obtain 
a mapping that just results in the XOR problem (but with points 
instead of boxes, as in Figure 3.a), which would require another 
shallow network to solve, and so the whole problem cannot be 
solved with a single shallow network. 

We also note, narrowing the gap in examples 4.a and 4.b, the 
algorithm requires more and more iterations to find the proper 
hyperplanes. The increase of iterations can also be observed at 
applying the Perceptron algorithm on linearly separable problems 
with small gaps. 

Figure 4: a) L-shape. b) white-in-the-middle. c) “evil” XOR 
problem (failed).

Finally, we used the MNIST dataset (containing 70 thousand 
input data, 28x28 pixel grayscale images of handwritten digits) 
to train ten individual neural networks, each trying to recognize a 
specific digit (e.g., is it 7 or some other digit?). We used n=30 hidden 
layer neurons and k=15 output neuron value. The training was 
successful in all the cases, reaching 100% accuracy on the training 
set (in about 120 epochs in the worst case). In figure 5, we show 
the accuracy improvement over epochs of the individual trainings, 
where label “Cat0” refers to the network trying to recognize digit 
0, “Cat1” for digit 1, etc. In the chart we can see learning curves 
similar to the ones we would experience at other machine learning 
tasks, and they show convergence.

Figure 5: Accuracy [%] vs. epoch charts of individual neural 
networks learning specific digits.

Conclusion

This paper presented a non-SGD-based machine learning 
method applicable to train shallow neural networks that can be 
used classification problems. The proposed solution build on the 
original idea of the Perceptron algorithm but extends it to the multi-
hyperplane separation case. The main advantage of this heuristic 
beyond its simplicity is that it tolerates imbalanced datasets. The 
effectiveness of the method has been demonstrated on several 
non-trivial cases, including artificial ones and a real-life dataset.

Regularization, that is, how to improve the method to perform 
accurately on the test data as well (not seen during training), is out 
of the scope in this paper, and serves as a future work.
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