
Acta Scientific COMPUTER SCIENCES

 Volume 4 Issue 2 February 2022

Evaluation of Static Analysis Tools for Mobile App Security

Ayush Maharjan1,2, Nahida Sultana Chowdhury1,2* and Rajeev R Raje2

1Modern Software Engineering, DMI, USA
2Indiana University Purdue University Indianapolis (IUPUI), USA

*Corresponding Author: Nahida Sultana Chowdhury, Software Engineer, DMI,
Indianapolis, IN, USA.

Research Article

Received: December 13, 2021

Published: January 18, 2022
© All rights are reserved by Ayush
Maharjan., et al.

Abstract
With the large number of Android apps available in app stores such as Google Play, it has become increasingly challenging to find

the secure Apps. Therefore, it is very important for users to consider the security and privacy issues while selecting an app from any
public app store. Many static analysis tools can identify security and privacy-related vulnerabilities in any mobile app code by high-
lighting potential flaws, often offering examples to resolve these flaws, and may even modify the code to remove the susceptibilities.
This paper empirically compares three publicly available static analysis tools for Android Apps and investigates their pros and cons
using the Ghera benchmark.

Keywords: Static Code Analysis; Android; Mobile App; Security; Privacy

Introduction

The types of security risks posed by mobile apps are quite dif-
ferent from the risks involved with desktop or Web software sys-
tems. Most of the mobile applications rely on user data and con-
stantly communicate through the network with remote servers
and devices. It is important to make sure that the data is protected
within the device as well as when it is being transmitted over a
communication channel such as WiFi, Bluetooth, NFC, etc. With the
advancement of smartphones, people have become more depen-
dent on such devices and apps they support. Many apps use im-
portant personal data of the users (such as their photos, location,
personal messages, etc.), which makes the security of data even
more important. Hence, it is utmost necessary to consider the se-
curity and privacy issues while downloading an app from any app
store. Such an analysis of apps can assist users in ranking similar
apps and make informed decisions before downloading an app for
their usage.

There have been numerous efforts [1-3] on identifying the se-
curity issues in mobile apps. Several open source and commercial

static analysis tools [4-7] are available that can detect security
issues in the mobile apps. These tools are used during develop-
ment to detect and fix security and privacy issues. However, one
of the challenges that still needs to be considered, is that the tools
themselves may not be reliable. Most of the static analysis tools are
known to report false positives [8]. It is difficult to consider each
such issue while running static analysis on large number of real-
world apps. This limitation can be overcome by using a sample
set of benchmark apps to analyze the reliability of the tools. This
research uses Ghera android vulnerabilities benchmark [9] to
benchmark three publicly available static analysis tools. The Ghera
benchmark is chosen over other available benchmarks due several
factors including the number of issues reported across different
categories, the nature of the issues reported, and the format of the
benchmark apps are organized. The rest of the paper is organized
as follows: section 4 presents related work and background litera-
ture. Section 5 presents the benchmark analysis. Section 6 discuss-
es experiments conducted and the results obtained. The paper con-
cludes by highlighting the insights gained and presents directions
for future work. The work described in the paper is a subset of the
work reported in the master’s thesis of the first author [10].

Citation: Ayush Maharjan., et al. “Evaluation of Static Analysis Tools for Mobile App Security". Acta Scientific Computer Sciences 4.2 (2022): 37-43.

Related work and background

Benchmarking of tools

Several benchmarks, associated with vulnerabilities for Android
platforms, have been developed for analyzing static code analysis
tools. A few prominent benchmarks that were considered in this
study are discussed below.

The Ghera Android Vulnerabilities benchmark suite [9] pro-
vides source code for a benign app, a malicious app and a secure
apps for each specific benchmark. A benign app is the version of
the application that exhibits the vulnerability; the malicious app
is the application that exploits the vulnerability in the benign app;
and the secure app is the application with the security vulnerabil-
ity removed from the benign app. Each benchmark also provides
a summary of the vulnerability along with the affected Android
versions and description and example of the vulnerability being
demonstrated through the benign and the secure apps. The Ghera
benchmark has a total of 60 benchmarks categorized into seven
groups - Cryptography, Inter-Component Communication (ICC),
Networking, Non-API, Permission, Storage, System, and Web.

Damn Insecure and Vulnerable App (DIVA) [10] is an app that
contains insecure and vulnerable code. It was originally intended
as a learning tool for Android developers to understand different
security vulnerabilities, but it has been used by security profes-
sionals for penetration testing. It includes various challenges such
as insecure logging, hard coding issues, insecure data storage, in-
put validation issues, access control issues, etc. [11].

Purposefully Insecure and Vulnerable Android Application (PIV-
AA) [12] is another insecure and vulnerable app that was designed
as an improvement over the outdated DIVA.

DroidBench 14 [13] is a micro-benchmark suite designed to
evaluate the effectiveness of Android taint-analysis tools. It com-
prises of 120 test cases for data leakage in Android apps. The test
cases cover the leakages related to Java (such as Arrays and Lists,
Callbacks, Reflection) and Android APIs (such as Lifecycle, Inter-
App Communication, Inter-Component Communication).

ICC-Bench [14] suite is a specialized repository of benchmark
apps focused towards Inter-Component data leakage in Android
apps. It consists of 24 small apps representing various vulnerabili-
ties related to Inter-Component Communication (ICC).

DialDroid-Bench [15] is another benchmark suite focused to-
wards the Android taint-analysis tools that consists of 30 real

world applications. It only consists of the apk files without any
source code or vulnerability details making it difficult to put it into
use for analysis of the tools.

This research chooses to use the Ghera benchmark over the oth-
er benchmark for several reasons. First, the Ghera benchmark cov-
ers a wider range of issues than other benchmarks across several
categories. It covers a broader range of issues than the benchmarks
such as DroidBench, ICC-Bench, DialDroid-Bench, which are fo-
cused towards the taint analysis tools. Secondly, the Ghera bench-
mark consists of micro-benchmarks that makes it easier to look at
each issue separately. Though DIVA and PIVAA also represent cat-
egories that focus on issues not just related to the taint analysis,
they contain all the errors in a single application. This makes the
analysis complex because it is difficult to verify if the issue is re-
ported correctly or not. Lastly, the Ghera benchmark also provides
good documentation of the issues and a version of the benchmark
app with the issue fixed. This is particularly useful because it helps
to recognize the false negatives reported by the tools.

Evaluating the analysis tools

Qiu., et al. [16] have performed an analysis of static taint analysis
tools, FlowDroid, AmanDroid, and DroidSafe. They have performed
the comparison using the DroidBench and ICC-Bench Benchmark
Suites. In this research, we have performed a similar analysis for
generic static analysis tools that were used. The tools and bench-
marks are focused toward Taint Analysis and focus mostly on ICC
vulnerabilities. It does not address issues such as cryptography, in-
secure usage of APIs, etc.

Pauck., et al. [17] have also performed an empirical evaluation
of the static taint analysis tools used in the research community.
They have used the DroidBench [13] to perform the analysis on
six different tools. They have also proposed the ReproDroid frame-
work to perform an accurate and reproducible evaluation of the
static analysis tools to overcome the differences in the evaluation
techniques used by the authors of the tools. This research is fo-
cused towards taint analysis as well, and does not cover several of
the vulnerabilities beside leakage of information.

A survey of android security threats and defenses was conduct-
ed by Rashidi., et al. [18]. Many of the threats identified are still
relevant, whereas some have become outdated. There were several
tools gathered in the survey, but we could not download or execute
any of the tools that were surveyed. Thus, none of the tools fit the
needs of this research.

38

Evaluation of Static Analysis Tools for Mobile App Security

Citation: Ayush Maharjan., et al. “Evaluation of Static Analysis Tools for Mobile App Security". Acta Scientific Computer Sciences 4.2 (2022): 37-43.

Tool analysis

For the selection of tools, we focused on generic static analysis
tools that cover many aspects related to the security of the tools.
The taint analysis tools, which are geared only towards data leak-
ages, were not considered in our study. Dynamic code analysis tools
take a long time for analysis and may not cover all execution paths
and hence, those were not selected in our study as well. Among the
potential tools that we identified, JAADAS [4] results in errors dur-
ing the analysis of most of the selected applications. MobSF [7], An-
droBugs Framework [6], and Qark [5] were tested against various
applications downloaded from Apkpure [19] and ran successfully.
Thus, we have used these three tools for this study.

MobSF

MobSF provides a user interface to upload apk files and per-
forms a detailed analysis of the apk files. It displays the analysis

results in the web app, but it can also return the results in json
format through the Rest API. It can also perform analysis of iOS ap-
plications.

MobSF extracts all the metadata of the apk including the name,
package name, the launcher activity, minimum SDK, maximum
SDK, version code and the version number. It also tracks the mani-
fest along with all the activities, services, receiver, and providers
of the app. It performs various kinds of security analyses such as
checking the signer certificate, checking permissions, binary anal-
ysis, manifest analysis, code analysis, file analysis, and malware
analysis. It also allows dynamic analysis of the apps.

Among the analysis that MobSF provides, the manifest analysis,
and code analysis contain the results of the static analysis related
to most of the security vulnerabilities. Other analysis did not pro-
vide any significant evidences that could be used in our study.

Category Vulnerability
Qark Androbugs MobSF

B S B S B S

Crypto

BlockCipher-ECB-InformationExposure-Lean

BlockCipher-NonRandomIV-InformationExposure-Lean

ConstantKey-ForgeryAttack-Lean P

ExposedCredentials-InformationExposure-Lean P O

PBE-ConstantSalt-InformationExposure-Lean P P O

ICC

DynamicRegBroadcastReceiver-UnrestrictedAccess-Lean P O

EmptyPendingIntent-PrivEscalation-Lean P O

FragmentInjection-PrivEscalation-Lean

HighPriority-ActivityHijack-Lean

ImplicitPendingIntent-IntentHijack-Lean

InadequatePathPermission-InformationExposure-Lean P P

IncorrectHandlingImplicitIntent-UnauthorizedAccess-Lean P O P P

NoValidityCheckOnBroadcastMsg-UnintendedInvocation-Lean P O P

OrderedBroadcast-DataInjection-Lean

StickyBroadcast-DataInjection-Lean P

TaskAffinity-ActivityHijack-Lean P

TaskAffinity-LauncherActivity-Lean

TaskAffinity-PhisingAttack-Lean P

TaskAffinityAndReparenting-PhisingAndDoSAttack-Lean

UnhandledException-DOS-Lean

UnprotectedBroadcastRecv-PrivEscalation-Lean P O P P

WeakChecksOnDynamicInvocation-DataInjection-Lean P O P

39

Evaluation of Static Analysis Tools for Mobile App Security

Citation: Ayush Maharjan., et al. “Evaluation of Static Analysis Tools for Mobile App Security". Acta Scientific Computer Sciences 4.2 (2022): 37-43.

Networking

CheckValidity-InformationExposure-Lean P

IncorrectHostNameVerification-MITM-Lean P P

InsecureSSLSocket-MITM-Lean P O P O

InsecureSSLSocketFactory-MITM-Lean P P O

InvalidCertificateAuthority-MITM-Lean P P

OpenSocket-InformationLean-Lean

UnEncryptedSocketComm-MITM-Lean

UnpinnedCertificates-MITM-Lean

NonAPI
MergeManifest-UnintendedBehavior-Lean

OutdatedLibrary-DirectoryTraversal-Lean

Permission
UnnecessaryPerms-PrivEscalation-Lean

WeakPermission-UnauthorizedAccess-Lean P P

Storage

ExternalStorage-DataInjection-Lean P

ExternalStorage-InformationLeak-Lean P

InternalStorage-DirectoryTraversal-Lean

InternalToExternalStorage-InformationLeak-Lean

SQLite-execSQL-Lean

SQLite-RawQuery-Lean P O

SQLite-SQLInjection-Lean P O

System

CheckCallingOrSelfPermission-PrivilegeEscalation-Lean P O

CheckPermission-PrivliegeEscalation-Lean P O

ClipboardUse-InformationExposure-Lean P

DynamicCodeLoading-CodeInjection-Lean

EnforceCallingOrSelfPermission-PrivilegeEscalation-Lean

EnforcePermission-PrivilegeEscalation

UniqueIDs-IdentityLeak-Lean P P

Web

HttpConnection-MITM-Lean

JavaScriptExecution-CodeInjection-Lean P P

UnsafeIntentURLImpl-InformaitonExposure-Lean

WebView-CookieOverwrite-Lean

WebView-NoUserPermission-InformationExposure-Lean P O

WebViewAllowContentAccess-UnauthorizedFileAccess-Lean P

WebViewAllowFileAccess-UnauthorizedFileAccess-Lean P O P O

WebViewIgnoreSSLWarning-MITM-Lean P P

WebViewInterceptRequest-MITM-Lean P O

WebViewLoadDataWithBaseUrl-UnauthorizedFileAccess-Lean

WebviewOverrideUrl-MITM-Lean

WebviewProceed-UnauthorizedAccess-Lean

Table 1: Ghera Results.

40

Evaluation of Static Analysis Tools for Mobile App Security

Citation: Ayush Maharjan., et al. “Evaluation of Static Analysis Tools for Mobile App Security". Acta Scientific Computer Sciences 4.2 (2022): 37-43.

AndroBugs

AndroBugs is a command line tool that can perform fast analysis
on large number of applications. It is a Python program that pro-
vides various commands to perform analysis on a single apk or a
set of apk files. It provides commands to display the results in com-
mand line and also outputs the results into text files. It internally
uses MongoDB to store the results. We are leveraging this database
directly to query the analysis results.

AndroBugs reports 51 different categories of vulnerability find-
ings with four levels (info, warning, critical, and notice. Instead of
reporting only the findings, it returns all 51 categories, and uses
the info level to notify the absence of the category. The warning and
critical levels represent the various types of vulnerabilities. The no-
tice level can have a generic notice that is neither a good practice,
nor a vulnerability, or it can also report good practices and vulner-
abilities. After manually categorizing the notice level, we obtained
a total of 38 categories as vulnerabilities, 2 categories as generic
messages (that can be ignored during the analysis) and 11 catego-
ries as good practices (with the Finding codes reported by Andro-
Bugs [6] reproduced verbatim).

Qark

Qark is a static analysis tool that detects security vulnerabilities
in Android apps. It is programmed in Python and provides a com-
mand line interface. It can analyze both source code and apk files. It
reports the results in html or json format. Each finding reports the
name, category, line number, severity (error/vulnerability/info/
warning), description, and the file where the vulnerability was de-
tected. It is not capable of detecting good practices. Qark does not
enlist the vulnerabilities it detects, so we had to manually extract
it from the source code. We identified a total of 45 vulnerabilities.

Experimental Results

The analysis of the three above-mentioned tools on the Ghera
benchmark is discussed in this section.

Dataset details

The Ghera benchmark, as indicated earlier, consists of 61
benchmark applications each with two versions of the application:
benign(B) and secure(S). The benchmark apps and their details can
be found in a bitbucket repository [20]. The benchmark applica-
tions are categorized by the different aspects of Android they affect.
The Crypto category consists of vulnerabilities related to the infor-

mation exposed through the ciphers and the keys used. The ICC
category consists of the vulnerabilities exposed through commu-
nication between different Android components. The benchmarks
related to the networking security are provided under Networking
category. The Non-API category consists of vulnerabilities exposed
through vulnerable and outdated libraries. The permission catego-
ry relates to the vulnerabilities exposed through improper usage of
permissions. The Storage category consists of the file system and
database vulnerabilities. Improper usages of lower-level Android
APIs are categorized under the System category. Finally, the Web
category consists of vulnerabilities through usage of web through
the URLs, webview and javascript code.

Benchmark analysis

For each benchmark app, a specific tool, if behaving correctly,
should detect the vulnerability in the benign but not in the secure
app. The results of applying the three tools on the Ghera bench-
mark are shown in the table 1. The P indicates the detection of vul-
nerabilities in the benign app and O represents the false positives
detected in the secure app.

Qark detected the highest number (19) of the benign applica-
tions but also falsely identified vulnerabilities in nine of the secure
application. MobSF had a similar performance, correctly identifying
18 and erroneously marking 9 applications. AndroBugs the lowest
number (13) of vulnerability identifications in benign apps, but it
had the just 2 false positive for secure applications. We can, from
Table 2, notice that the different tools performed well in different
categories of the Ghera benchmark. The Qark and MobSF had most
benign application detections in the ICC category, but MobSF had
a lower number of false positives for secure applications. MobSF
suffers from wrongly identifying the secure applications in other
categories, while Qark performs relatively well. AndroBugs is good
at detecting Network, Web and ICC categories, which are all related
to communication with external agents. The overall count for each
tool and categories is shown in table 2.

Each benign application identified is a true positive, and the
one that is not detected is a false negative. In the case of secure
applications, when a vulnerability is detected, it is a false negative,
otherwise it is a true negative. For the three tools, based on their
performance on the Ghera benchmark, we calculated their F-scores
and those are summarized in table 3.

41

Evaluation of Static Analysis Tools for Mobile App Security

Citation: Ayush Maharjan., et al. “Evaluation of Static Analysis Tools for Mobile App Security". Acta Scientific Computer Sciences 4.2 (2022): 37-43.

Category
Qark Androbugs MobSF

Benign Secure Benign Secure Benign Secure

Crypto 1 0 1 1 2 1

ICC 7 6 3 0 7 1

Networking 3 0 4 1 2 2

NonAPI 0 0 0 0 0 0

Permission 0 0 1 0 1 0

Storage 2 0 0 0 2 2

System 3 2 1 0 1 1

Web 3 1 3 1 3 2

Total 19 9 13 3 18 9

Table 2: Ghera count by category.

The F1-scores, as indicated in table 3, are 0.41 for MobSF, 0.42 for
Qark, and 0.33 for AndroBugs. Hence, as seen from Tables I and III,
we conclude that MobSF and Qark have a similar performance, while
AndroBugs shows the worst performance on the Ghera benchmark
suite.

Limitations

In this study, we have conducted an evaluation of three publicly
available static code analysis tools based upon the vulnerabilities
detected in the benign apps, and the false positives detected in the
secure apps of the Ghera benchmark suite. The tool selection, in our
study, has been limited because there are only a limited number of
publicly available tools which run successfully without producing
errors. Our experiments could be emulated with other static code
analysis tools if and when they become freely available.

Tool Precision Recall F-Score
MobSF 0.66666667 0.29508197 0.40909091
Qark 0.67857143 0.31147541 0.42696629
AndroBugs 0.8125 0.21311475 0.33766234

 Table 3: Precision, Recall, and F-Score for Ghera Benchmark
Results.

Though the Ghera benchmark consists of a large number of vul-
nerabilities, there are numerous other vulnerabilities in other areas
of the Android framework (e.g., Camera, Networking) that are not
covered by it. Also, newer vulnerabilities get introduced with newer

Android versions. Thus, the Ghera benchmark suite can itself be
extended with additional vulnerabilities that the tools may need
to be tested against.

Conclusion and Future Work

An evaluation of three static code analysis tools (MobSF, Qark,
and AndroBugs) against the Ghera benchmark suite is described
in this paper. Our experiments indicate that MobSF and Qark had
a better overall performance (as indicated by their F-scores) than
AndroBugs. However, AndroBugs had higher precision and was
able to detect vulnerabilities with a low number of false positives
than the other two tools.

Our experiments also highlight different categories of vulner-
abilities that are detected by these three tools. All tools can detect
vulnerabilities in most of the categories in the Ghera benchmark
suite. All three tools are also able to detect some of the common
vulnerabilities, but each of them detects a few vulnerabilities that
are not detected by other two tools.

This research can form a comprehensive basis while selecting
tools for performing a security analysis of Android apps. Such a
selection will allow a ranking of tools with appropriate weights
assigned to them and will be beneficial for the users before they
download any specific app on their Android device.

Acknowledgements

Ayush Maharjan was supported by the University fellowship
provided by IUPUI and Nahida Sultana Chowdhury was supported

42

Evaluation of Static Analysis Tools for Mobile App Security

Citation: Ayush Maharjan., et al. “Evaluation of Static Analysis Tools for Mobile App Security". Acta Scientific Computer Sciences 4.2 (2022): 37-43.

Bibliography

• Prompt Acknowledgement after receiving the article
• Thorough Double blinded peer review
• Rapid Publication
• Issue of Publication Certificate
• High visibility of your Published work

Assets from publication with us

Website: www.actascientific.com/
Submit Article: www.actascientific.com/submission.php
Email us: editor@actascientific.com
Contact us: +91 9182824667

by the Department of Computer Science at IUPUI during this re-
search. A. Maharjan and N. Chowdhury are currently employed at
DMI - DMI has supported the publications charges for this article.

1. Z Qu., et al. “Dydroid: Measuring dynamic code loading and
its security implications in android applications”. In 2017 47th
Annual EEE/IFIP International Conference on Dependable
Systems and Networks (DSN) (2017): 415-426.

2. K Hamandi., et al. “Android SMS malware: Vulnerability and
mitigation”. In 2013 27th International Conference on Ad-
vanced Information Networking and Applications Workshops
(2013): 1004-1009.

3. S Fahl., et al. “Why eve and Mallory love android: An analysis
of android ssl (in) security”. in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser.
CCS’12. New York, NY, USA: Association for Computing Ma-
chinery (2012): 50-61.

4. “JAADAS Online”. https://github.com/flankerhqd/JAADAS

5. “QARK Online”. https://github.com/linkedin/qark

6. “Androbugs Framework Online”. https://github.com/Andro-
Bugs/AndroBugsFramework

7. “Mobile Security Framework Online”. https://github.com/
MobSF/Mobile-Security-Framework-MobSF

8. J Brittany., et al. “Why don’t software developers use static
analysis tools to findbugs?” 35th International Conference on
Software Engineering (2013).

9. J Mitra and VP Ranganath. “Ghera: A repository of android app
vulnerability benchmarks”. in Proceedings of Promise (2017).

10. A Maharjan. “Ranking of Android Apps based on Security Evi-
dences”. MS Thesis, IUPUI (2020).

11. G Michael., et al. “Information-flow analysis of android appli-
cations in droid safe”. in NDSS Symposium, (2015).

12. W Fengguo., et al. “Aman-droid: A precise and general inter-
component data flow analysis framework for security vetting
of android apps”. ACM Transactions on Privacy and Security
(2018).

13. “DIVA Android Online”. https://github.com/payatu/diva-an-
droid.

14. “Purposefully Insecure and Vulnerable android Application”.
https://github.com/HTBridge/pivaa

15. “DroidBench 2.0”. https://github.com/secure-software-engi-
neering/DroidBench

16. N S Chowdhury and R R Raje. “A holistic ranking scheme for
apps”. 21st International Conference of Computer and Informa-
tion Technology (2018).

17. N S Chowdhury and R R Raje. “Disparity between the pro-
grammatic views and the user perceptions of mobile apps”.
20th International Conference of Computer and Information
Technology (2017).

18. N S Chowdhury and R R Raje. “SERS: A security-related and
evidence-based ranking scheme for mobile apps”. IEEE Inter-
national Conference on Trust, Privacy and Security in Intelli-
gent Systems, and Applications (2019).

19. “Apkpure”. https://apkpure.com

20. J Mitra and VP Ranganath. “Ghera Android App Vulnerabilities
benchmark”.

43

Evaluation of Static Analysis Tools for Mobile App Security

Citation: Ayush Maharjan., et al. “Evaluation of Static Analysis Tools for Mobile App Security". Acta Scientific Computer Sciences 4.2 (2022): 37-43.

https://ieeexplore.ieee.org/document/8023141
https://ieeexplore.ieee.org/document/8023141
https://ieeexplore.ieee.org/document/8023141
https://ieeexplore.ieee.org/document/8023141
https://ieeexplore.ieee.org/document/6550526
https://ieeexplore.ieee.org/document/6550526
https://ieeexplore.ieee.org/document/6550526
https://ieeexplore.ieee.org/document/6550526
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2382196.2382205
https://github.com/flankerhqd/JAADAS
https://github.com/linkedin/qark
https://github.com/AndroBugs/AndroBugsFramework
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://people.engr.ncsu.edu/ermurph3/papers/icse13b.pdf
https://people.engr.ncsu.edu/ermurph3/papers/icse13b.pdf
https://people.engr.ncsu.edu/ermurph3/papers/icse13b.pdf
https://arxiv.org/pdf/1708.02380.pdf
https://arxiv.org/pdf/1708.02380.pdf
https://people.csail.mit.edu/mgordon/papers/droidsafe-ndss-2015.pdf
https://people.csail.mit.edu/mgordon/papers/droidsafe-ndss-2015.pdf
https://cse.usf.edu/~xou/publications/ccs14.pdf
https://cse.usf.edu/~xou/publications/ccs14.pdf
https://cse.usf.edu/~xou/publications/ccs14.pdf
https://cse.usf.edu/~xou/publications/ccs14.pdf
https://github.com/payatu/diva-android
https://github.com/HTBridge/pivaa
https://github.com/secure-software-engineering/DroidBench
https://ieeexplore.ieee.org/document/8631955
https://ieeexplore.ieee.org/document/8631955
https://ieeexplore.ieee.org/document/8631955
https://ieeexplore.ieee.org/document/8281774
https://ieeexplore.ieee.org/document/8281774
https://ieeexplore.ieee.org/document/8281774
https://ieeexplore.ieee.org/document/8281774
https://apkpure.com
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/src/master/
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/src/master/

	_GoBack

