
Acta Scientific COMPUTER SCIENCES

 Volume 4 Issue 2 February 2022

How Apache MapReduce Handles Big Data Query?

Radhya Sahal*
Faculty of Computer Science and Engineering, Hodeidah University, Al Hudaydah,
Yemen

*Corresponding Author: Radhya Sahal, Faculty of Computer Science and
Engineering, Hodeidah University, Al Hudaydah, Yemen.

Short Communication

Received: December 20, 2021

Published: January 18, 2022
© All rights are reserved by Radhya Sahal.

Abstract
Apache MapReduce is the most popular framework for batch data processing. However, despite its merits, the critical challenge of

Apache MapReduce is rapidly handling queries over large scale data. This review aims to provide the state-of-the-art of Apache Hive,
a famous language to handle big query data on Apache MapReduce.

Keywords: Query Processing; Apache MapReduce; Hive; HiveQL

Apache MapReduce principles

Apache MapReduce is a programming model applied by Google
for various purposes such as analytical data applications. In addi-
tion, it is a correlated implementation to process and generate Big
Data sets [1,2]. Furthermore, it improves the performance of Big
Data analytics by exploiting parallelism among several process-
ing nodes [3]. At the programming level, developers define a Map
function and a Reduce function as follows; the Map function is the
phase that processes key-value pairs to produce a set of interme-
diate key-value pairs. Reduce function is the phase that joins all
intermediate values associated with the same intermediate key.
In other words, the programs are written in this functional style
which is automatically parallelized and executed on a cluster of
commodity machines. Furthermore, the runtime system consid-
ers the details of partitioning the input data, scheduling the pro-
gram’s execution on a set of machines, handling machine failures
and managing the required inter-machine communication. This
allows the programmers to efficiently use the resources of a mas-
sively distributed system without any experience with parallel and
distributed systems [4].

Figure 1 depicts the execution of MapReduce phases which
implement two functions; Map and Reduce. The Map phase takes

an input pair and generates a set of intermediate key-value pairs.
The MapReduce library combines all intermediate values with the
same intermediate key I and passes them to the Reduce phase. The
Reduce phase accepts an intermediate key I and a set of values. It
joins together these values to form a probably smaller set of values
where the intermediate values are provided to the user’s Reduce
function via an iterator. Typically, just zero or one output value is
produced per Reduce invocation [1].

Figure 1: MapReduce execution overview [1].

Citation: Radhya Sahal. “How Apache MapReduce Handles Big Data Query?". Acta Scientific Computer Sciences 4.2 (2022): 34-36.

Query processing in Apache MapReduce

Besides efficiency, Apache MapReduce provides two simple, us-
er-friendly interfaces; Map and Reduce function (Figure 1). Apache
MapReduce supports query processing by integrating high-level
declarative languages such as Hive and Pig to simplify the pro-
gramming of data applications [5-7]. These MapReduce-based
query languages hide implementation details (e.g., access methods,
query plan optimization) and offer developers and Big Data ana-
lysts an SQL-like interface [5,6]. Hive language is used in this work,
where the HiveQL queries are translated into MapReduce jobs [7].
From the inside, each MapReduce job is flushed back to Hadoop
Distributed File System (HDFS) as a backup for fault tolerance. The
next MapReduce job reads the intermediate results of the previ-
ous job to continue processing. The HDFS I/O cost is significantly
higher than local storage, including a network cost. So, exploiting
the shared jobs within multiple queries can reduce HDFS I/O cost
of intermediate results. Consequently, the shuffling cost of inter-
mediate results can be cheaper than generating too large a size of
intermediate results when no sharing data is exploited [7,8].

Apache hive

Hive is the first high-level query language for data warehouse,
runs on top of the Hadoop framework to facilitate executing the
query and managing large datasets [9]. It provides an interface
similar to SQL, called HiveQL which makes MapReduce tasks
more understandable and easier for programmers and developers
[9,10]. Recently, Hive has become one of the Hadoop ecosystems
tools and compatible with many massively parallel processing such
as MapReduce and Tez. Therefore, most new research studies focus
on high-level language regardless of the massively parallel process-
ing [11-15]. According to these studies, Hive is considered a mature
SQL-on-Hadoop engine. The user connects to the user interface and
executes a HiveQL command sent to the driver. The driver creates
a session and then sends the query to the compiler, which extracts
metadata from the metastore and generates an execution plan. This
logical plan is optimized by Hive query optimizer and then translat-
ed into an executable query plan which consists of multiple MapRe-
duce phases. Finally, the MapReduce execution engine executes the
plan consisting of one job tracker and possibly several task trackers
per Map and Reduce phases [15].

HiveQL

HiveQL does not strictly follow the full SQL-92 standard. HiveQL
offers extensions, not in SQL, including multiple INSERT and CRE-
ATE TABLE AS SELECT commands. Also, HiveQL supports trans-
actions and materialized views. Furthermore, HiveQL provides
different plans for INSERT, UPDATE, and DELETE with full ACID
functionality. Hive compiler translates HiveQL statements into a di-
rected acyclic graph (DAG) of MapReduce jobs that are given to be
executed in Hadoop [16,17].

Bibliography

1.	 J Dean and S Ghemawat. “MapReduce: simplified data process-
ing on large clusters”. Communications of the ACM 51 (2008):
107-113.

2.	 R Lämmel. “Google’s MapReduce programming model-Revisit-
ed”. Science of Computer Programming 70 (2008): 1-30.

3.	 S Wu., et al. “Query optimization for massively parallel data
processing”. In Proceedings of the 2nd ACM Symposium on Cloud
Computing (2011): 12.

4.	 J Dean and S Ghemawat. “MapReduce: a flexible data process-
ing tool”. Communications of the ACM 53 (2010): 72-77.

5.	 R Sahal., et al. “Exploiting Coarse-grained Reused-based Op-
portunities in Big Data Multi-Query Optimization”. Journal of
Computational Science 26 (2018): 432-452.

6.	 R Sahal., et al. “Comparative Study of Multi-query Optimiza-
tion Techniques using Shared Predicate-based for Big Data”.
International Journal of Grid and Distributed Computing 9
(2016): 229-240.

7.	 R Sahal. et al. “iHOME: Index-based JOIN Query Optimization
for Limited Big Data Storage”. Journal of Grid Computing 16
(2018): 345-380.

8.	 X-Y Gao. et al. “Exploiting Sharing Join Opportunities in Big
Data Multiquery Optimization with Flink”. Complexity (2020):
2020.

9.	 A Thusoo. et al. “Hive: a warehousing solution over a map-re-
duce framework”. PVLDB 2 (2009): 1626-1629.

10.	 A Thusoo. et al. “Hive-a petabyte scale data warehouse using
Hadoop”. In 26th IEEE International Conference on Data Engi-
neering (ICDE) (2010): 996-1005.

35

How Apache MapReduce Handles Big Data Query?

Citation: Radhya Sahal. “How Apache MapReduce Handles Big Data Query?". Acta Scientific Computer Sciences 4.2 (2022): 34-36.

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://www.sciencedirect.com/science/article/pii/S0167642307001281
https://www.sciencedirect.com/science/article/pii/S0167642307001281
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.481.5905&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.481.5905&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.481.5905&rep=rep1&type=pdf
https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext
https://cacm.acm.org/magazines/2010/1/55744-mapreduce-a-flexible-data-processing-tool/fulltext
https://www.sciencedirect.com/science/article/abs/pii/S1877750317306142
https://www.sciencedirect.com/science/article/abs/pii/S1877750317306142
https://www.sciencedirect.com/science/article/abs/pii/S1877750317306142
file:///E:/ANUSHA/Acta/FEBRUARY/ASCS/ASCS-21-SC-203/Comparative%20Study%20of%20Multi-query%20Optimization%20Techniques%20using%20Shared%20Predicate-based%20for%20Big%20Data
file:///E:/ANUSHA/Acta/FEBRUARY/ASCS/ASCS-21-SC-203/Comparative%20Study%20of%20Multi-query%20Optimization%20Techniques%20using%20Shared%20Predicate-based%20for%20Big%20Data
file:///E:/ANUSHA/Acta/FEBRUARY/ASCS/ASCS-21-SC-203/Comparative%20Study%20of%20Multi-query%20Optimization%20Techniques%20using%20Shared%20Predicate-based%20for%20Big%20Data
file:///E:/ANUSHA/Acta/FEBRUARY/ASCS/ASCS-21-SC-203/Comparative%20Study%20of%20Multi-query%20Optimization%20Techniques%20using%20Shared%20Predicate-based%20for%20Big%20Data
https://link.springer.com/article/10.1007/s10723-018-9431-9
https://link.springer.com/article/10.1007/s10723-018-9431-9
https://link.springer.com/article/10.1007/s10723-018-9431-9
https://www.hindawi.com/journals/complexity/2020/6617149/
https://www.hindawi.com/journals/complexity/2020/6617149/
https://www.hindawi.com/journals/complexity/2020/6617149/
http://www.vldb.org/pvldb/vol2/vldb09-938.pdf
http://www.vldb.org/pvldb/vol2/vldb09-938.pdf
http://infolab.stanford.edu/~ragho/hive-icde2010.pdf
http://infolab.stanford.edu/~ragho/hive-icde2010.pdf
http://infolab.stanford.edu/~ragho/hive-icde2010.pdf

•	 Prompt Acknowledgement after receiving the article
•	 Thorough Double blinded peer review
•	 Rapid Publication
•	 Issue of Publication Certificate
•	 High visibility of your Published work

Assets from publication with us

Website: www.actascientific.com/
Submit Article: www.actascientific.com/submission.php
Email us: editor@actascientific.com
Contact us: +91 9182824667

11.	 J LeFevre. et al. “Opportunistic physical design for big data
analytics”. In Proceedings of ACM SIGMOD international confer-
ence on management of data (2014): 851-862.

12.	 HSA Azez. et al. “JOUM: An Indexing Methodology for Improv-
ing Join in Hive Star schema”. International Journal of Scientific
and Engineering Research 6 (2015): 111-119, 2015.

13.	 MN Abdullah. et al. “HOME: HiveQL Optimization in Multi-Ses-
sion Environment”. In Proceedings of the 5th European Confer-
ence of Computer Science (ECCS14) (2014): 80-89.

14.	 T Dokeroglu. et al. “Improving the performance of Hadoop
Hive by sharing scan and computation tasks”. Journal of Cloud
Computing 3 (2014): 1-11.

15.	 A Gruenheid. et al. “Query optimization using column statis-
tics in hive”. In Proceedings of the 15th Symposium on Interna-
tional Database Engineering and Applications (2011): 97-105.

16.	 E Capriolo. et al. “Programming Hive”. Data warehouse and
query language for Hadoop, O’Reilly Media, Inc (2012).

17.	 R Kumar. et al. “Comparison of SQL with HiveQL”. International
Journal for Research in Technological Studies 1 (2014): 2348-
1439.

36

How Apache MapReduce Handles Big Data Query?

Citation: Radhya Sahal. “How Apache MapReduce Handles Big Data Query?". Acta Scientific Computer Sciences 4.2 (2022): 34-36.

https://dl.acm.org/doi/10.1145/2588555.2610512
https://dl.acm.org/doi/10.1145/2588555.2610512
https://dl.acm.org/doi/10.1145/2588555.2610512
https://www.ijser.org/paper/JOUM-An-Indexing-Methodology-for-Improving-Join-in-Hive-Star-schema.html
https://www.ijser.org/paper/JOUM-An-Indexing-Methodology-for-Improving-Join-in-Hive-Star-schema.html
https://www.ijser.org/paper/JOUM-An-Indexing-Methodology-for-Improving-Join-in-Hive-Star-schema.html
https://www.researchgate.net/publication/275354496_HOME_HiveQL_Optimization_in_Multi-Session_Environment
https://www.researchgate.net/publication/275354496_HOME_HiveQL_Optimization_in_Multi-Session_Environment
https://www.researchgate.net/publication/275354496_HOME_HiveQL_Optimization_in_Multi-Session_Environment
https://journalofcloudcomputing.springeropen.com/track/pdf/10.1186/s13677-014-0012-6.pdf
https://journalofcloudcomputing.springeropen.com/track/pdf/10.1186/s13677-014-0012-6.pdf
https://journalofcloudcomputing.springeropen.com/track/pdf/10.1186/s13677-014-0012-6.pdf
https://dl.acm.org/doi/10.1145/2076623.2076636
https://dl.acm.org/doi/10.1145/2076623.2076636
https://dl.acm.org/doi/10.1145/2076623.2076636
https://www.oreilly.com/library/view/programming-hive/9781449326944/
https://www.oreilly.com/library/view/programming-hive/9781449326944/
https://www.geeksforgeeks.org/difference-between-sql-and-hiveql/
https://www.geeksforgeeks.org/difference-between-sql-and-hiveql/
https://www.geeksforgeeks.org/difference-between-sql-and-hiveql/

	_GoBack

