
Acta Scientific COMPUTER SCIENCES

 Volume 4 Issue 1 January 2022

TaQO: A Tabu Search Based SPARQL Query Optimization Approach

Tanvi Chawla*
Research Scholar, MNIT, Jaipur, India

*Corresponding Author: Tanvi Chawla, Research Scholar, MNIT, Jaipur, India.

Review Article

Received: August 04, 2021

Published: December 13, 2021
© All rights are reserved by Tanvi Chawla.

Abstract

Semantic Web is an emerging technology for information representation in web pages. This growth has further accelerated
with the Linked Open Data (LOD) movement. One of the commonly accepted standard for representing semantic web data is the Re-
source Description Framework (RDF). SPARQL Protocol and RDF Query Language (SPARQL) is the commonly used query language
for querying data from the Semantic Web. Query Processing is one of the most important tasks of any database and thus it
requires optimal solutions. Query Optimization is one of the phases in query processing. This phase is crucial for generating an
optimed version to a submitted query. This optimized query will reduce the query execution time depending upon the type of opti-
mization solution used. The generally used solutions to Query optimizations like those used for relational databases can be directly
applied to Semantic web frameworks. But these solutions have to be tailored according to RDF data and SPARQL.

Keywords: Semantic Web; RDF; SPARQL; Query Optimization; Selectivity

Introduction

Semantic Web represents linked data; this data can be easily
accessed and understood. The main objective of Semantic Web
is to make all information that is available on the World Wide
Web (WWW) accessible and it should be understood by both the
humans and the machines. The Semantic Web has the potential
to change the way how data on the web is collected, stored and
analyzed. The potential of the Semantic Web is yet to be fully
exploited. RDF is the standard model for data interchange on the
Semantic Web and has also become popular because of its flexibility
that is a result of its underlying graph based model [15].

Query optimization for distributed SPARQL processing is neces-
sary as Semantic web data is available over distributed sources.
Moreover, with the proliferation in the amount of Semantic web
data storage of RDF data on a single machine has become difficult.
The centralized RDF storage systems are not adequate to store

and process this vast amount of data. Thus, come into picture the
distributed RDF systems which can adequately store and process
this large amount of RDF data. But these systems are limited by
the large amount of processing and communication costs involved
while processing SPARQL queries over this distributed RDF data.
The objective of query optimization is to find a query execution
plan that minimizes the processing cost of the query and the cost
of data transmission for query execution in a distributed environ-
ment. The query execution plans can be structurally represented as
left-deep, right-deep and bushy trees [12].

Join order is an important factor that affects the performance
of query processing, because join ordering affects the size of in-
termediate results. A good query execution plan thus depends on
the order of joins. The overall goal is find an optimal order for
the patterns in the query that minimize the size of intermediate
results during each stage of query execution. For scalable manage-

Citation: Tanvi Chawla. “TaQO: A Tabu Search Based SPARQL Query Optimization Approach". Acta Scientific Computer Sciences 4.1 (2022): 16-22.

ment of semantic web data it makes sense to spend time on query
optimization for large datasets. As it will help to produce optimal
query plans which in turn will reduce the query processing time,
thus showing a considerable improvement in query performance.
The order of joins mainly depends on the selectivity & the cost of
the join [1]. The SPARQL query may be visualized as a query graph.
The selectivity in the graph is computed for both the nodes and
the edges. The edge selectivity or the join selectivity is computed as
the product of selectivity of the two join patterns.

One of the parameters frequently used while SPARQL query op-
timization is selectivity of triple patterns. The triple patterns may
be ranked by the size of their intermediate results. The selectivity
of a triple pattern, sel(T) is the fraction of the triples which sat-
isfy that pattern. The statistical information may be used to get an
estimate of the selectivity of a triple pattern. The triple patterns
may be ranked according to their estimated selectivity that is ex-
pected to reduce the size of the intermediate results [2]. Using the
cost function for estimation of selectivity, the triples can be ranked
in the increasing order of their selectivity. This cost function esti-
mates the selectivity in the range [0,1]. The overall cost of a triple
pattern is;

c(t) = c(s) ∗ c(p) ∗ c(o)----------- (1)

Where t is the triple pattern, and s, p, o are the subject, predicate
and object in the triple pattern.

The remainder of this paper is organized as follows. In Section
2, the some of the work done in context of cost- based and
heuristic-based SPARQL optimization is discussed. Section 3, pres-
ents the a brief overview about the tabu search approach and its
applications. Section 4, presents the proposed approach and the
fitness function used for the Tabu Search. Finally in Section 6, we
conclude by discussing the parameters used in our approach and
future work that can be done by extending the proposed approach.

Related work

P. Tsialiamanis., et al. [3] proposed a Heuristics based SPARQL
optimization approach. The authors analyzed the drawbacks of a
cost based optimization approach considering the large join order
space. The reason being that most of the times the statistics are
missing. The importance of a heuristic based optimization ap-
proach was emphasized even with an option to partially use cost-

based statistics. The authors proposed Heuristic SPARQL planner
(HSP) that is based on computing a query execution plan without
using nay cost model. The SPARQL query optimization problem is
reduced to a maximum independent set problem. During SPARQL
query optimization it is difficult to estimate the statistics due to
the complex nature of RDF data. Also using cost based optimization
means to have prior knowledge of the underlying dataset. This is
not the case in case of Heuristics based optimization as no prior
knowledge of dataset of the dataset is required. SPARQL query op-
timization is targeted at minimizing the intermediate results size
and determining an optimal query execution plan. To achieve
optimization another solution is to determine an optimal join
ordering and maximizing the number of merge joins as they
have less cost as compared to the Hash joins. The heuristic based
optimisation techniques proposed by the authors can be used in
both the centralized as well as the distributed settings like in the
cloud. The first heuristic is based on the selectivity of the triple pat-
terns; and the second heuristic is based on the distinct position of
the joins. There are three more heuristics that are concluded after
studying the RDF graphs. The authors have compared their HSP
with the cost-based dynamic programming (CDP) planner of RDF-
3x. the HSP is implemented on top of the MonetDB.

K. Anyanwu [4] presents a vision for translating SPARQL que-
ries to another data model and algebra i.e. the Nested Triple Group
Data Model and Algebra (NTGA). This model has been proposed
for evaluating SPARQL queries over MapReduce. There are several
challenges which need to be solved while implementing tradition-
al optimization techniques on the MapReduce platform. One of
them being collecting data statistics and building indexes around
that data. The traditional cost based optimization techniques cant
be directly implemented on MapReduce as they are not aware of
the MapReduce setting. Other techniques like the Heuristics- based
SPARQL optimization can be considered. One of the considerations
while implementing this technique is reducing the length of Ma-
pReduce workflows. While implementing SPARQL optimization
over MapReduce it is important to reduce the number of cycles
and to process a query within a single MapReduce job. Also the
communication overhead incurred while processing queries must
be minimized.

B. Quilitz and U. Leser [5] proposed DARQ, an en gine for feder-
ated SPARQL queries, this engine uses query rewriting and cost-
based query optimization techniques to speed up the process of

17

TaQO: A Tabu Search Based SPARQL Query Optimization Approach

Citation: Tanvi Chawla. “TaQO: A Tabu Search Based SPARQL Query Optimization Approach". Acta Scientific Computer Sciences 4.1 (2022): 16-22.

query execution. The results obtained depict that the optimization
techniques used help to achieve a great improvement in query per-
formance despite of the fact that only a small amount of statistics
may be available. The authors have proposed a query optimization
algorithm that builds a cost-effective query plan. In the second
stage of DARQ i.e. the Query Planning stage, the query is decom-
posed into multiple sub-queries. In the third stage i.e. Optimiza-
tion, the Query optimizer takes the sub-queries from the previous
stage and builds an optimized query execution plan. Some of the
statistical information that is available is the number of triples with
predicate p, the selectivity of a triple pattern with predicate p is the
subject is bound etc. The authors have used iterative dynamic pro-
gramming for optimization. Among all the computed query execu-
tion plans the best one is computed by comparing all the plans us-
ing a cost model. The cost factor that is used for the sub-queries is
the expected result size of the queries. The cost of the nested loop
and the bind joins are computed individually, and the result size of
a query will be estimated based on the statistics. This optimization
algorithm is implemented over distributed sources.

P. Obermeier and L. Nixon [6] proposed a cost model that
is a sub-component of a query optimizer for distributed SPARQL
processing. This cost model will serve as a cost indicator for the
other components of the query optimizer like for query rewrit-
ing, decomposition as well for choosing a join algorithm that
decides on the join order. One of the most popular SPARQL query
engine is Jena ARQ. This cost model estimates the cost for each
individual operation in the query and then computes a total
of these costs. These costs are distinguished on the number of
resources used like CPU instructions, the number of I/O operations
etc. It is presumed that the SPARQL query is given as a graph
model i.e. a SPARQL query graph model (SQGM). This query graph
model is a planar rooted directed graph in which the operators are
the nodes and the data flow is represented as edges. The proposed
cost model is based on a recursive cost function that in turn
relies on a recursive cardinality function. Firstly, a method is used
to assign cost and cardinality functions to each basic SPARQL
operation. Cardinality, CPU and I/O cost functions are assigned to
each SPARQL operation. This SQGM is evaluated in a distributed
environment.

A. Hogenboom., et al. [7] introduced RDF chain query optimiza-
tion for a distributed environment. Some of the meta- heuristic na-
ture inspired methods like genetic algorithm (GA), ant-colony opti-

mization (ACO) etc. have been used for query optimization but they
have only been evaluated in a centralized environment. The authors
have proposed a technique to adapt these techniques in a distrib-
uted environment and assess the performance of these methods
in this environment. The objective is to optimize the join order of
the results of the SPARQL chain queries. The authors have also
analyzed the effects of the different join methods e.g. nested-loop
join, bind join etc. while querying RDF data the triples are matched
against the patterns in the SPARQL queries. The join order of the
results obtained from the subqueries may be optimized and later
joined to compute the final results of the query. The sequence of
joins in the query can be represented as trees

i.e. left-deep, right-deep or bushy trees. These nodes in the que-
ry tree can be ordered in multiple ways and are referred to as the
query paths. The total execution time of the query is dependent
on the ordering of these joins of the subqueries. The solution space
for the process of SPARQL query path optimization consists of mul-
tiple right-deep and bushy trees. The number of possible solutions
for right deep trees is n! while for bushy trees it is

The challenge in query path optimization is to find an opti-
mal query path that minimizes the query execution costs [15,16].
The authors propose a cost model for executing SPARQL queries in
a distributed environment. For multiple join operations cardinal-
ity is estimated, cardinality is estimated by counting the number of
triples that match a pattern. The cardinality of a non-base join set
pj in distributed databases is estimated by using bloom filters or
histograms. The different optimization algorithms 2PO (RCQ-2PO),
GA (RCQ-GA) [10], and ACO (RCQ-ACO) [11] are implemented on
multiple distributed sources and the results are compared based on
the execution time for the optimization process and the qual-
ity of the optimized solution. From the results obtained it can be
concluded that irrespective of the cost function used, RCQ- ACO
algorithm performs faster for smaller queries i.e. that consist of
upto 10 joins, whereas the RCQ-GA algorithm is the fastest for
larger queries.

A major amount of work has been done in employing these na-
ture inspired metaheuristic algorithms for SPARQL optimization.
Apart from the Genetic (GA) and Ant colony optimization (ACO)
algorithms one another such algorithm i.e. an Cuckoo search al-
gorithm has also been used for SPARQL optimization where the

18

TaQO: A Tabu Search Based SPARQL Query Optimization Approach

Citation: Tanvi Chawla. “TaQO: A Tabu Search Based SPARQL Query Optimization Approach". Acta Scientific Computer Sciences 4.1 (2022): 16-22.

best query plan is generated using the fitness function [13]. In an-
other such work, optimal query plans are generated using SAPSO
algorithm which is a hybrid of the Simulated Annealing (SA) and
Particle Swarm Optimization (PSO) algorithms [14].

Fuqi Song and Olivier Corby [8] proposed query plan- ning
methods for SPARQL query optimization, since query planning is
one of the most essential tasks performed by a query optimizer.
Query Planning (QP) component enumerates all the possible query
plans and selects the best one. The two main issues involved in
SPARQL query planning are; the representation of SPARQL state-
ments and evaluating the cost of queries. To solve the first issue
a SPARQL query graph may be constructed for the statements.
And to solve the second issue the most frequently used approaches
include pre-computed statistics and heuristics. The first approach
i.e. pre-computed statistics certain summary data is obtained on
the available RDF data. This summary data may be obtained using
histogram-based methods and then this data is utilized to calcu-
late the cost of the query plans. With the heuristic- based methods
certain heuristics are defined by observing the RDF data, and then
these heuristics are applied to estimate the cost. The statistic-based
approaches are expensive in terms of resources like time and space
that is used but relatively they are more accurate. On the contrary,
the heuristic-based approaches are easy to implement, are less
costly but they may be less efficient for some particular datasets.
Also, heuristic-based approaches are more suitable to be applied in
a distributed environment as in such an environment it is difficult
to obtain statistics. The authors have used heuristic-based ap-
proaches as these approaches have shown to depict promising
results for SPARQL query planning. The heuristic-based methods
are used with a cost model to formalize the heuristics and to
calculate the cost of the query plan. Two of the main things essen-
tial in a query planning process requires include; computed query
plans and a cost estimation model or technique. A desirable query
optimizer must generate query plans having low cost and apply ac-
curate cost estimation techniques. The authors have used the Ex-
tended SPARQL query triple pattern Graph (ESG) for representing
their SPARQL statements. The cost can be computed in terms of
the execution time and space consumed by the results after evalu-
ating a SPARQL expression in a query. Both the time and space can
be evaluated by computing the intermediate results returned from
the RDF dataset. This means if the intermediate result size is more
then, the cost of evaluating the query in terms of execution time and

storage space is also more. SPARQL optimization intends at mini-
mizing this intermediate result size to reduce the query processing
time.

Wang., et al. [9] presented a Minimum-Spanning-Tree- based
(MST-based) algorithmic approach for distributed SPARQL pro-
cessing. Some previous research has shown that methods from
the graph theory can be applied to optimize the performance
of distributed SPARQL. The early approaches for SPARQL optimiza-
tion include query rewriting, selectivity- based triple pattern re-
ordering etc. These optimization techniques for SPARQL queries
are still not much developed as they lack the required efficiency.
One of the methods for con- structing query plans for distributed
SPARQL queries includes searching the minimum weight path using
a graph traversing algorithm. Using this approach a query execu-
tion plan (QEP) can be constructed for distributed SPARQL queries.
Using some graph traversal algorithm an optimal query plan may
be constructed that corresponds to a MST. The authors have used
the Prims algorithm to find the MST. The evaluation frame- work
designed by the authors consists of 5 components i.e. a data gen-
erator, data splitter, statistics collector, data distributor and a test
driver. One of the many drawbacks in distributed SPARQL optimi-
zation is lack of an efficient and accurate cost model. The authors
have proposed and implemented this DSP engine that is based on
the Prims algorithm. They have compared this DSP engine with
the DARQ engine, from the results it is concluded that this DSP en-
gine performs better than the DARQ in terms of both the query
processing time and system resource usage.

RDF-3X is considered to be the most popular tool for scalable
management of Semantic web data; the query times are quite fast
for this engine. To enable high performance SPARQL queries on
the semantic web RDF-3X makes use of histograms, summary
statistics, and some query optimization techniques. Thus, RDF-3X
can generally outperform the other solution for queries. But the
performance of RDF-3Xs degrades if the selectivity factor of que-
ries is low even for the queries with simple joins. The performance
of RDF-3X is poor for such queries and in most of the cases it aborts
before the completion of the query. RDF-3X achieves best perfor-
mance only for queries that have a high selectivity and contain
bound objects. RDF-3x utilizes the dynamic programming approach
to enumerate all the possible query plans. The plans may be
computed in bottom-up or top-down manner. The time complexity

19

TaQO: A Tabu Search Based SPARQL Query Optimization Approach

Citation: Tanvi Chawla. “TaQO: A Tabu Search Based SPARQL Query Optimization Approach". Acta Scientific Computer Sciences 4.1 (2022): 16-22.

of the approach is O(n3), where n is the number of triple patterns
in the query [1].

Tabu search

Tabu search is a metaheuristic local search algorithm that has
been used to solve various optimization problems. Tabu search
uses a neighborhood search procedure. In this way, it iteratively
moves from one possible solution x to another possible solution x´
which is in the neighborhood of X This process continues until a
stopping condition is met or some threshold is reached. The
tabu search will explore the neighborhood of each solution care-
fully with progressing search. In this algorithm, a memory struc-
ture is used known as the tabu list (TL). This memory structure is
used to record the search history. So a new improved solution is
determined using this memory structure as the search progresses.
The tabu list generally consists of a short term list of solutions that
have been visited in the past. The memory structures used in this
tabu search can be categorized into short-term, intermediate and
long-term. Like the short-term structure consists of a list of solu-
tions that were recently considered.

In tabu search strategic restrictions and aspiration levels are in-
troduced as a means for exploiting the search spaces.

This flexible memory structure TL restricts the next solution
choice to some subset of neighborhood of the current solution.
Some of the parameters in tabu search are the neighborhood struc-
ture, aspiration conditions, the maximum size of the tabu list and
the stopping rule. In tabu search a neighborhood is constructed
to identify the adjacent solutions that can be reached from the cur-
rent solution. Some of the main draw- backs of tabu search include
that many parameters have to be determined and the iterations
can be very large. Tabu search is widely used in many applications

such as Graph coloring and partitioning, Vehicle routing, Job shop
scheduling etc.

Proposed approach

SPARQL query plan

The RDF data of the Semantic web can be queried using SPAR-
QL. This SPARQL query can be represented as a query tree where
the leaf nodes represent the triples and the internal nodes repre-
sent the join between these triples. These query trees can be repre-
sented as bushy trees, left-deep and right- deep trees. The nodes in
these trees can be arranged in different ways to produce the same
results. The order in which teh operation sin the tree are executed
is referred to as the query plan. In a parallel setting or a distributed
environment the bushy trees are used frequently. Our proposed ap-
proach uses the left deep trees.

Solution space

Each solution in the solution space represents a query plan. The
size of this solution space depends on the type of query trees that
are being used. As we are using here the left deep trees so there are
n! possible solutions. These different solutions can be obtained by
applying various transformation rules. The type of encoding used
for these left-deep trees is the ordered list. A query plan tree (T1∞
(T2∞ T3∞) T4) is encoded as “1234”.

 Figure 1: Left-deep trees.

Fitness function

The fitness function or the objective or cost functions re-
fers to the cost of a query plan. The cost of the query plan is

20

TaQO: A Tabu Search Based SPARQL Query Optimization Approach

Citation: Tanvi Chawla. “TaQO: A Tabu Search Based SPARQL Query Optimization Approach". Acta Scientific Computer Sciences 4.1 (2022): 16-22.

the cost of thus left deep tree that depends on the selectivity and
the cardinality estimation. This fitness function is defined assum-
ing that the population contains n solutions. This fitness function
represents the cost of the solution which is to be minimized. So
among all the possible solutions the solution with the minimum
fitness value will be chosen. Coi represents the cost of a solution i,
Ci represents the cardinality and si,j is the selectivity.

The cardinality for a join tree T can be computed as,

For a given tree T with multiple joins, the cost function CoT
can be defined as;

Conclusion

In the past work has been done using various nature inspired
algorithms like Cuckoo search and Ant colony optimization (ACO)
for SPARQL optimization. In this work, we have presented another
nature inspired optimization approach; TaQo for the problem of
SPARQL query optimization. In the presented algorithm the cardi-
nality of the triples in the dataset is estimated using the given cost
model. The query plans differ from each other according to the or-
der of their joins. The maximum number of iterations can be manu-
ally set and the stopping condition be the minimum value of Δf. In
the future work, this algorithm can be extended to develop a hybrid
algorithm that is a combination of two metaheuristic algorithms.
The hybrid algorithm can be a combination of cuckoo search and
tabu search algorithms for solving the problem of SPARQL query
optimization. This algorithm can also be adapted to work in a dis-
tributed environment.

1. P Yuan., et al. “Dynamic and fast processing of queries on
large-scale RDF data”. Knowledge and Information Systems
41.2 (2014): 311-334.

2. Bernstein C., et al. “OptARQ: A SPARQL Optimization Approach
based on Triple Pattern Selectivity Estimation”. Department of
University of Zurich (2007).

3. P Tsialiamanis., et al. “Heuristics-based query optimisation for
SPARQL”. in the 15th International Conference on Extending
Database Technology, Berlin, Germany (2012): 324-335.

4. K Anyanwu. “A vision for SPARQL multi-query optimization
on MapReduce”.in The 29th International Conference on Data
Engineering Workshops (ICDEW) Brisbane, Australia (2013):
25-26.

5. B Quilitz and U Leser. “Querying distributed RDF data sources
with SPARQL”. in European Semantic Web Conference, Tener-
ife, Spain (2008): 524-538.

6. LNP Obermeier and L Nixon. “A cost model for querying dis-
tributed rdf repositories with sparql”. in The Workshop on Ad-
vancing Reasoning on the Web: Scalability and Commonsense,
Tenerife, Spain (2008).

7. Hogenboom E., et al. “RDF chain query optimization in a dis-
tributed environment”. in the 30th Annual ACM Symposium on
Applied Computing, Salamanca, Spain (2015): 353-359.

Bibliography

21

TaQO: A Tabu Search Based SPARQL Query Optimization Approach

Citation: Tanvi Chawla. “TaQO: A Tabu Search Based SPARQL Query Optimization Approach". Acta Scientific Computer Sciences 4.1 (2022): 16-22.

https://www.researchgate.net/publication/260166264_Dynamic_and_fast_processing_of_queries_on_large-scale_RDF_data
https://www.researchgate.net/publication/260166264_Dynamic_and_fast_processing_of_queries_on_large-scale_RDF_data
https://www.researchgate.net/publication/260166264_Dynamic_and_fast_processing_of_queries_on_large-scale_RDF_data
https://www.researchgate.net/publication/228359365_OptARQ_A_SPARQL_optimization_approach_based_on_triple_pattern_selectivity_estimation
https://www.researchgate.net/publication/228359365_OptARQ_A_SPARQL_optimization_approach_based_on_triple_pattern_selectivity_estimation
https://www.researchgate.net/publication/228359365_OptARQ_A_SPARQL_optimization_approach_based_on_triple_pattern_selectivity_estimation
https://openproceedings.org/2012/conf/edbt/TsialiamanisSFCB12.pdf
https://openproceedings.org/2012/conf/edbt/TsialiamanisSFCB12.pdf
https://openproceedings.org/2012/conf/edbt/TsialiamanisSFCB12.pdf
https://www.researchgate.net/publication/261108570_A_vision_for_SPARQL_multi-query_optimization_on_MapReduce
https://www.researchgate.net/publication/261108570_A_vision_for_SPARQL_multi-query_optimization_on_MapReduce
https://www.researchgate.net/publication/261108570_A_vision_for_SPARQL_multi-query_optimization_on_MapReduce
https://www.researchgate.net/publication/261108570_A_vision_for_SPARQL_multi-query_optimization_on_MapReduce
https://link.springer.com/chapter/10.1007/978-3-540-68234-9_39
https://link.springer.com/chapter/10.1007/978-3-540-68234-9_39
https://link.springer.com/chapter/10.1007/978-3-540-68234-9_39
file:///D:/AS/ASCS/ASCS-21-RW-102/A%20cost%20model%20for%20querying%20distributed%20rdf-repositories%20with%20sparql
file:///D:/AS/ASCS/ASCS-21-RW-102/A%20cost%20model%20for%20querying%20distributed%20rdf-repositories%20with%20sparql
file:///D:/AS/ASCS/ASCS-21-RW-102/A%20cost%20model%20for%20querying%20distributed%20rdf-repositories%20with%20sparql
file:///D:/AS/ASCS/ASCS-21-RW-102/A%20cost%20model%20for%20querying%20distributed%20rdf-repositories%20with%20sparql
https://www.researchgate.net/publication/310361644_RDF_chain_query_optimization_in_a_distributed_environment
https://www.researchgate.net/publication/310361644_RDF_chain_query_optimization_in_a_distributed_environment
https://www.researchgate.net/publication/310361644_RDF_chain_query_optimization_in_a_distributed_environment

8. F Song and O Corby. “Extended Query Pattern Graph and Heu-
ristics- based SPARQL Query Planning”. Procedia Computer Sci-
ence 60 (2015): 302-311.

9. X Wang., et al. “Evaluating graph traversal algorithms for dis-
tributed SPARQL query optimization”. in Joint International
Semantic Technology Conference, Hangzhou, China (2011):
210-225.

10. Hogenboom V., et al. “RCQ-GA: RDF chain query optimization
using genetic algorithms”. in International Conference on Elec-
tronic Commerce and Web Technologies, Linz, Austria (2009):
181-192.

11. EG Kalayci., et al. “An ant colony optimisation approach for op-
timising SPARQL queries by reordering triple patterns”. Infor-
mation Systems 50 (2015): 51-68.

12. O Gorlitz and S Staab. “Federated data management and query
optimization for linked open data”. New Directions in Web Data
Management 1 (2011): 109-137.

13. R Gomathi and D Sharmila. “A novel adaptive cuckoo search
for optimal query plan generation”. The Scientific World Jour-
nal (2014).

14. R Gomathi and D Sharmila “A Hybrid Nature Inspired Algo-
rithm for Generating Optimal Query Plan”. World Academy of
Science, Engineering and Technology. International Journal of
Computer, Electrical, Automation, Control, and Information En-
gineering 8.8 (2014): 1519-1524.

15. T Chawla., et al. “Research issues in RDF management systems”.
in International Conference on Emerging Trends in Communi-
cation Technologies (ETCT), Dehradun, India (2016): 1-5.

16. T Chawla., et al. “A shortest path approach to SPARQL chain
query optimisation”. in International Conference on Advances
in Computing, Communications, and Informatics (ICACCI),
Udupi, India (2017): 1778-1783.

17. T Chawla., et al. “JOTR: Join-Optimistic Triple Reordering Ap-
proach for SPARQL Query Optimization on Big RDF Data”. in 9th
International Conference on Computing, Communication and
Networking Technologies (ICCCNT), Bengaluru, India (2018):
1-7.

• Prompt Acknowledgement after receiving the article
• Thorough Double blinded peer review
• Rapid Publication
• Issue of Publication Certificate
• High visibility of your Published work

Assets from publication with us

Website: www.actascientific.com/
Submit Article: www.actascientific.com/submission.php
Email us: editor@actascientific.com
Contact us: +91 9182824667

22

TaQO: A Tabu Search Based SPARQL Query Optimization Approach

Citation: Tanvi Chawla. “TaQO: A Tabu Search Based SPARQL Query Optimization Approach". Acta Scientific Computer Sciences 4.1 (2022): 16-22.

https://www.sciencedirect.com/science/article/pii/S1877050915022577
https://www.sciencedirect.com/science/article/pii/S1877050915022577
https://www.sciencedirect.com/science/article/pii/S1877050915022577
https://www.researchgate.net/publication/262364988_Evaluating_Graph_Traversal_Algorithms_for_Distributed_SPARQL_Query_Optimization
https://www.researchgate.net/publication/262364988_Evaluating_Graph_Traversal_Algorithms_for_Distributed_SPARQL_Query_Optimization
https://www.researchgate.net/publication/262364988_Evaluating_Graph_Traversal_Algorithms_for_Distributed_SPARQL_Query_Optimization
https://www.researchgate.net/publication/262364988_Evaluating_Graph_Traversal_Algorithms_for_Distributed_SPARQL_Query_Optimization
https://www.researchgate.net/publication/221017526_RCQ-GA_RDF_chain_query_optimization_using_genetic_algorithms
https://www.researchgate.net/publication/221017526_RCQ-GA_RDF_chain_query_optimization_using_genetic_algorithms
https://www.researchgate.net/publication/221017526_RCQ-GA_RDF_chain_query_optimization_using_genetic_algorithms
https://www.researchgate.net/publication/221017526_RCQ-GA_RDF_chain_query_optimization_using_genetic_algorithms
https://www.researchgate.net/publication/272239581_An_Ant_Colony_Optimisation_Approach_for_Optimising_SPARQL_Queries_by_Reordering_Triple_Patterns
https://www.researchgate.net/publication/272239581_An_Ant_Colony_Optimisation_Approach_for_Optimising_SPARQL_Queries_by_Reordering_Triple_Patterns
https://www.researchgate.net/publication/272239581_An_Ant_Colony_Optimisation_Approach_for_Optimising_SPARQL_Queries_by_Reordering_Triple_Patterns
https://www.researchgate.net/publication/225651676_Federated_Data_Management_and_Query_Optimization_for_Linked_Open_Data
https://www.researchgate.net/publication/225651676_Federated_Data_Management_and_Query_Optimization_for_Linked_Open_Data
https://www.researchgate.net/publication/225651676_Federated_Data_Management_and_Query_Optimization_for_Linked_Open_Data
https://www.hindawi.com/journals/tswj/2014/727658/
https://www.hindawi.com/journals/tswj/2014/727658/
https://www.hindawi.com/journals/tswj/2014/727658/
https://publications.waset.org/9999468/a-hybrid-nature-inspired-algorithm-for-generating-optimal-query-plan
https://publications.waset.org/9999468/a-hybrid-nature-inspired-algorithm-for-generating-optimal-query-plan
https://publications.waset.org/9999468/a-hybrid-nature-inspired-algorithm-for-generating-optimal-query-plan
https://publications.waset.org/9999468/a-hybrid-nature-inspired-algorithm-for-generating-optimal-query-plan
https://publications.waset.org/9999468/a-hybrid-nature-inspired-algorithm-for-generating-optimal-query-plan
https://ieeexplore.ieee.org/document/7882968
https://ieeexplore.ieee.org/document/7882968
https://ieeexplore.ieee.org/document/7882968
https://ieeexplore.ieee.org/abstract/document/8126102
https://ieeexplore.ieee.org/abstract/document/8126102
https://ieeexplore.ieee.org/abstract/document/8126102
https://ieeexplore.ieee.org/abstract/document/8126102
https://ieeexplore.ieee.org/document/8493743
https://ieeexplore.ieee.org/document/8493743
https://ieeexplore.ieee.org/document/8493743
https://ieeexplore.ieee.org/document/8493743
https://ieeexplore.ieee.org/document/8493743

	_GoBack

