
Acta Scientific COMPUTER SCIENCES

 Volume 3 Issue 9 September 2021

Spatial Grasp Model for Management of Dynamic Distributed Systems

Peter Simon Sapaty*
Institute of Mathematical Machines and Systems National Academy of Sciences,
Kiev, Ukraine

*Corresponding Author: Peter Simon Sapaty, Institute of Mathematical Machines
and Systems National Academy of Sciences, Kiev, Ukraine.

Review Article

Received: July 07, 2021

Published: August 31, 2021
© All rights are reserved by Peter Simon
Sapaty.

Abstract

More complex distributed and intelligent systems are being developed covering both terrestrial and celestial environments, which
relate to economy, ecology, communications, security, and defense. Their efficient management, especially in dynamic and unpre-
dictable situations, needs serious investigations and development, even breakthroughs, in scientific and technological areas. Their
traditional representations as parts operating by certain algorithms and exchanging messages are becoming inadequate as such sys-
tems need much stronger integration in order to operate as holistic organisms pursuing global and often varying goals. The current
paper is just oriented on a completely different paradigm for organization and management of large dynamic and distributed systems,
which extends and transforms the notion of algorithm for not only describing knowledge processing logic but also allowing it to di-
rectly exist, propagate, and operate as an integral whole in any distributed spaces, which may be constantly changing their volumes
and structures. Having some organizational features related to powerful viruses, recent pandemics too, this ubiquitous Spatial Grasp
(SG) model is presented in the paper on philosophical and implementation levels, with introduction of special spatio-charts for its
exhibition and studies, which are extending traditional algorithmic flowcharts towards working directly in distributed spaces. Using
this model for the creation of resultant Spatial Grasp Technology and its basic Spatial Grasp Language, already described in detail in
numerous publications, is also briefed. Elementary examples of dealing with distributed networks, collective human-robotic beha-
vior, and removal of space debris by constellation of cleaning satellites explain SG advantages over traditional system organizations.

Keywords: Algorithm; Flowchart; Distributed Systems; Spatial Grasp; Spatio-chart; Holistic Solutions; Network Management; Col-
lective Behavior; Space Debris

1. Introduction
More and more complex distributed and intelligent systems are

being developed worldwide covering both terrestrial and celesti-
al environments, as well as their integration, which relate to eco-
nomy, ecology, communications, security, defense, and many other
areas. Their efficient management, especially in dynamic, unpre-
dictable, and crises-prone situations, needs serious investigations
and development, often breakthroughs, in political, scientific, te-
chnological, and industrial areas. Their traditional representations

as parts or agents operating by certain individual algorithms and
exchanging messages with other parts are becoming inefficient
and inadequate, as such systems need much stronger integration in
order to operate as super-summative holistic organisms pursuing
global philosophy and rapidly changing goals. The current paper is
just oriented on a completely different paradigm for organization
and management of large dynamic and distributed systems, which
extends and transforms the notion of algorithm for not only desc-
ribing knowledge processing logic but also allowing it to directly

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

exist, propagate, and operate as an integral whole in any distribu-
ted spaces. Having some organizational, self-spreading, self-rep-
licating and self- recovering features in some sense resembling
powerful world viruses, recent pandemics too, this ubiquitous Spa-
tial Grasp (SG) model is presented in the paper on philosophical,
methodological, and implementation levels. The rest of the paper
is organized as follows.

Section 2 describes basics of Spatial Grasp model and how it
differs from conventional algorithm, also introduces new type of
a chart called spatio-chart as a further development of traditional
flowcharts for describing and analyzing scenarios operating direct-
ly in distributed spaces. It shows how collections of actions can be
described in SG and exhibited by spatio-charts, including the use
of control rules supervising repetition, sequencing and branching
in the spatial scenarios, with such organizations capable of being
unlimitedly hierarchical and recursive.

Section 3 briefs the main elements of Spatial Grasp Technology
(SGT) and its high-level recursive Spatial Grasp Language (SGL)
based on SG philosophy, with already existing numerous publica-
tions, books including, on this approach, its implementation and
numerous applications. This includes different types of distributed
worlds GGT operates with, types of spatial variables of SGL, some
of which may be stationary while others mobile, main types of SGL
rules which can be nested, different control states provided by SGL
scenarios propagation, and general organization of the distributed
and networked SGL interpreter.

Section 4 provides examples of solving different distributed
problems under SG model which confirm its advantages in com-
parison with traditional parallel and distributed system organi-
zations. These include network management with finding and
collecting a path between different nodes with printing it at the
final or starting node, organizing collective behavior of a mixed
human-robotic team, and also using large constellation of debris-c-
leaning satellites operating together under the global goal. In all
these examples the solutions are provided by spatial SGL scenarios
self-evolving and matching distributed dynamic spaces, which even
cannot be classified as systems in advance of these solutions, and
should be absolutely needed by any other approaches.

Section 5 concludes the paper summarizing obtained results
and mentioning the new activities planned in this area, including

new SGT implementation, new patenting of the SG model, and also
new book on using SG model and the resultant technology for ma-
nagement of integrated terrestrial and celestial systems, which is
currently in preparation.

2. Spatial grasp versus traditional algorithm
2.1 Algorithm and flowchart

Algorithm is a finite sequence of well-defined, computer-imp-
lementable instructions, typically to solve a class of specific prob-
lems or to perform a computation [1-3]. Algorithms are always
unambiguous and are used as specifications for performing cal-
culations, data processing, automated reasoning, and other tasks.
In contrast, a heuristic is a technique used in problem solving that
uses practical methods and/or various estimates in order to pro-
duce solutions that may not be optimal but are sufficient given the
circumstances [4].

A flowchart is a type of diagram that represents a workflow or
process [5,6]. A flowchart can also be defined as a diagrammatic
representation of an algorithm, a step-by-step approach to solving
a task. The flowchart shows the steps as boxes of various kinds, and
their order by connecting the boxes with arrows. Flowcharts are
used in analyzing, designing, documenting or managing a process
or program in various fields. An example of a simple flowchart is in
figure 1 (where a processing step is usually depicted as a rectangu-
lar box and a decision as a diamond).

75

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

Figure 1: Example of a flowchart.

2.2 The simplest spatial grasp explanation

SG [7-13] operates by spatial scenarios self-spreading in physi-
cal and virtual worlds while creating, matching, transforming and
managing them. The interpreted scenario text is not staying in any
fixed point or points in space but rather spreads itself while car-
rying further its remainder and often omitting the utilized parts.

Single operation

Imagine you are staying in some point of space (which may be a
paper sheet, computer memory, or any terrestrial or celestial envi-
ronment) and just writing:

44.55

You will get this value in this point which may stay there indefi-
nitely and without any name. Another example:

5 + 6.

This operation will produce the value 11 which will also stay in
this point without a name too. One more:

R = 5 + 6.

The result 11 will be assigned to a variable R and will stay there
under this name. It may be subsequently accessed by the name R
if to come into this point again. Other example, but now related to
physical space: move(x55, y88).

From the starting point in space, you will move to another point
having certain x-y coordinates, and will stay there. If you want to
create a node named John in the virtual space, with staying indefini-
tely in this node, just write:

create(‘John’).

If the node John already exists, you may directly hop into it from
the starting point, as follows.

hop(‘John’).

A single action may produces a multiple result, for example,
by hopping simultaneously to virtual nodes John, Peter, and Alex,
if they already exist, as:

hop(‘John’, ‘Peter, ‘Alex’).

Or moving in parallel to a number of physical world locations
from a starting point, as follows:

move((x55, y88), (x5, y12), (x105, y92)).

Generalizing the above mentioned and other possible examples
with a single action, let the latter be named as g and applied in
some Start point, we can receive the result in some region of
space (consisting of computational, virtual, physical or combined
points), symbolically named (but in capital) as G too, which may
include the Start position, as shown in figure 2.

We will be using such space processing and navigation charts
in the subsequent examples too, calling such form of exhibition as
spatio-chart (or just spatiochart) versus traditional flowchart.

Multiple operations

Let us consider now a sequence of possible operations in space,
with using semicolon as a delimiter between them. Assigning to a
variable R and then changing its value, with finally staying in the
same position in space, can be as follows:

R = 15; R = R + 10.

Hopping to virtual node John and then creating a new node
Peter with relation to it from John as of his

father, with final staying in node Peter:

hop(‘John’); create(link(‘father’), node(‘Peter’)).

76

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

Figure 2: The simplest spatio-chart.

Hopping to virtual node Peter and then creating a friend relation
to the already existing node John, with final staying in node John:

hop(‘Peter’); linkup(‘friend’, node(‘John’)).

Moving to a physical location by its absolute coordinates
and then twice shifting to other locations by given coordinate
changes, with final staying in the node reached by the second shift:

move(x55, y88); shift(x11, y22); shift(x9, y45).

The mentioned and any other examples with sequences of acti-
ons gi applied from a Start position, with the next action gi + 1 origi-
nating in all or some space positions reached by the previous action
gi, can be represented just as:

g1; g2; g3.

Their collective operation is also shown as a spatio-chart in fi-
gure 3 with regions reached by actions gi named as Gi (which may
generally include positions covered by the previous actions, the
Start including). This also takes into account that the rest of the
sequence has to propagate in space for delivering descriptions of
further actions, and the already used operations are removed from
the sequence.

Figure 3: Spatio-chart for a sequence of actions in space.

In figure 4, detailing the sequence of operations of figure 3, it is
shown that the movement from regions Gi to Gi+1 can be made in
parallel from different points of Gi (from the same points potentially
too, as gi may themselves represent parallel operations), so the
operational sequences in reality can be replicated at any stage of
their development.

Figure 4: Possible code replications during parallel space
navigation.

2.3 Using control rules
For sequencing

In a more advanced organization of the sequence of operations
we may use different control rules embracing them, which
can provide additional, often nonlocal, functionality and more
advanced processing and coverage of distributed spaces, as follows
for rule r1 and the operational sequence considered before:

r1(g1; g2; g3).

The rule will be activated in the position where the whole sequ-
ence is applied, like Start as before. It then may influence the whole
sequence of embraced operations with receiving a feedback from
its entire development (if such feedback needed by the rule’s func-
tionality), as shown in figure 5.

Figure 5: Spatio-chart with a control rtule.

The rule, for example, may represent such functionality as print,
create, repeat and many other cases of nonlocal management and
control. Let us consider a few examples in more detail.

77

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

r1 print.

By this rule, the results obtained by the mentioned sequence of
operations (and not only by its last operation g3, but also by g1
and g2 classified as final results too) can be returned to the Start
position and printed there, with final staying in the Start.

r1  create.

This rule can supply the space propagating operations, especial-
ly those describing movement in virtual spaces, with global power
of creating these spaces or their individual elements if they are
absent during this movement and therefore do not allow it to pro-
ceed further. This means that the same written sequence of actions
gi can work in both space navigation and space creation modes,
depending on circumstances.

r1 repeat.

Under this rule, the sequence of operations gi at first is proces-
sed as usual, step by step, until the rest of it becomes empty, but
after this, it starts to work from the very beginning again, as shown
in figure 6. The repeat rule always leaves the already processed
operations in their sequence (which are not removed as without
it), with the whole sequence repeatedly propagating and working
in space until this is possible.

Figure 6: Repeated navigation of space.

The operational sequence can be embraced by any number of
control rules, which can be nested, as follows for rules r1 and r2
and also shown in figure 7 (with r1 activated in the Start position,
and r2 in the positions in space G1 (which may be more than one)
reached by operation g1.

r1(g1; r2(g2; g3)).

Figure 7: Nested control rules.

A few examples of combination of such nested rules as follows:

r1  create r2  repeat

r1  print r2  create

r1  repeat r2  repeat

r1  repeat r2  print

For the last case, printing the results obtained by actions g2 and
g3 will be organized in all positions of the region G1 reached by g1
(which, moreover, can be repeated by rule r1 at the higher level)
and not in Start as for r1 in the second case).

For branching

Other rules may allow branching in space, with different
branches (separated by comma) developing from the same
positions in space (as follows and also shown in figure 8, where r1

Figure 8: Branching under control rule.

78

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

is used to control two branches, and r2 to manage the sequence of
operations belonging to the second branch).

r1(g1, r2(g2; g3)).

Possible meaning of r1 and r2 may be as follows, with both rules
activated in the Start position.

r1  or	 r2  create.

Rule r1, activating two branches in any order or in parallel from
the same Start position, selects the first one in time replying with
a positive termination result, considering its space locations and
data obtained there as the final result, while ignoring all achieve-
ments of another branch. Rule r2 covers the sequence of operati-
ons g2 and g3 of the second branch, supplying them with creative
power during space navigation (will be completed and accepted if
classified as the resultant branch by r1).

r1  if	 r2  print.

Rule r1 first launches branch g1, and only if and after it terminates
with a positive result, activates the second branch with g2 and g3
embraced by rule r2, which organizes printing their final results
in the Start position with staying there, the latter considered as
holding the final result. If g1 results with failure, the final stay will
be in the Start too but without any new result.

r1  and r2  repeat.

Rule r1 activates the two branches in any order or in parallel,
and only after both branches reply with their final success, r1 can
confirm the whole success of this mission (with r2 organizing repe-
titive development of the sequence of two embraced operations).
The successful positions reached in space by both branches will
be considered as holding the final results of the scenario, with sub-
sequent saying in them indefinitely. If any branch replies with fai-
lure, the development of the second branch will be terminated as
soon as possible, as not needed any more. After r1 fails, there will
be no position to stay in space further, with Start just abandoned.

We can also consider the development of operations g2 and
g3 not in a sequence but in branching mode too, as follows, also
depicted in figure 9, with both rules activated in the Start position,
where r1 is embracing r2 and all operations r2 coordinates, i.e. g2
and g3.

Figure 9: Nested branching.

r1(g1, r2(g2, g3)).

Possible examples of combinations of these rules, hopefully cle-
ar enough without further explanation.

r1  or r2  or

r1  if r2  and

r1  and r2  or

r1  and r2  and

2.4 Recursive scenarios

In figures 2 to 8 we had in mind that operations g1, g2, g3 could
be of any complexity. This means that each one itself could be subs-
tituted by the whole scenarios shown in all these figures, for which
again each operation could be substituted by the whole scenario
again, and so on, with such recursion potentially to any depth. If,
for example, to substitute operation g2 of the previous scenario
r1(g1, r2(g2, g3)) shown in figure 8 with the scenario (g4 ; r3(g5,
g6)) enclosed in parentheses as a whole unit, we will receive a more
detailed organization with the resultant combined scenario as fol-
lows, where its spatial development is shown in figure 10:

r1(g1, r2((g4; r3(g5; g6)), g3)).

We have shown only very few examples for structuring of spa-
tial scenarios and rules coordinating their collections, with using
semicolon to separate succeeding each other operations, and com-
ma for branches. We may also have comma as the only separator by
substituting the sequences of components separated by semicolon
with another rule advance covering them, with comma being se-

79

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

Figure 10: Spatio-chart recursion.

parator too, as follows, thus resulting in uniformity of all possible
spatial scenarios.

g1; g2; g3  advance(g1, g2, g3).

This may sometimes be less convenient to write, but the rule
advance in general provides additional and very useful options for
sequencing of operations, as described in the full SGL.

In general, the Spatial Grasp model is much more advanced, di-
verse, and complex, with capability of returning the obtained re-
sults and control states whatever remote and multiple they might
appear. It also allows to make any decisions for the further space
navigation, creates dynamic operational infrastructures capable
of solving any distributed problems, also effectively mimicking or
implementing any other models and approaches (Petri nets and
neural nets including), and so on.

3. Spatial grasp technology (SGT) basics
3.1 The spatial grasp language

The mentioned above and many other SG model’s capabilities
can be expressed by the recursive high level Spatial Grasp Language
(SGL) in which all spatial scenarios are represented, with its top
level syntax following. (The overall SGL scenario is called grasp,
syntactic categories are shown in italics, vertical bar separates
alternatives, parts in braces indicate zero or more repetitions with
a delimiter at the right if multiple, and constructs in brackets are
optional).

Figure a

3.2 The worlds SGT operates with

SGT allows us to directly operate with the following world rep-
resentations: Physical World (PW), considered as continuous and
infinite, where each point can be identified and accessed by physi-
cal coordinates; Virtual World (VW), which is discrete and consists
of nodes and semantic links between them; and Executive world
(EW) consisting of active “doers” with communication possibili-
ties between them. Different kinds of combination of these worlds
can also be possible within the same formalism, as follows: Virtu-
al-Physical World (VPW) where individually named VW nodes can
associate with coordinates of certain PW points or any its regions;
Virtual- Execution World (VEW), where doer nodes may have
special names assigned to them and semantic relations in betwe-
en, similarly to pure VW nodes; Execution-Physical World (EPW)
can have doer nodes associated with certain PW coordinates; and
Virtual-Execution-Physical World (VEPW) combining all features
of the previous cases.

3.3 SGL variables

Spatial variables, stationary or mobile, which can be used in
fully distributed physical, virtual or executive environments, are
effectively serving multiple cooperative processes under the uni-
fied control. These are: Global variables (most expensive), which
can serve any SGL scenarios and be shared by them, also by the-
ir different branches; Heritable variables appearing within a sce-
nario step and serving all subsequent, descendent steps; Frontal
variables serving and accompanying the scenario evolution, being
transferred between subsequent steps; Environmental variables
allowing us to access, analyze, and possibly change different featu-
res of physical, virtual and executive words during their navigation;
and finally, Nodal variables as a property of the world positions
reached by scenarios and shared with other scenarios in same po-
sitions.

80

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

3.4 SGL rules

SGL rules, capable of representing any actions or decisions, be-
long to the following main categories: (a) hierarchical fusion and
return of potentially remote data; (b) distributed control, sequenti-
al and/or parallel, in both breadth and depth of the scenario evolu-
tion; (c) a variety of special contexts detailing navigation in space,
also clarifying character and peculiarities of the embraced opera-
tions and decisions; (d) type and sense of a value or its chosen
usage for guiding automatic language interpretation; and (e) indi-
vidual or massive creation, modification, or removal of nodes and
connecting links in distributed knowledge networks, allowing us
to effectively work with arbitrary knowledge structures. All rules
are pursuing the same unified ideology and organizational sche-
me, as follows: (1) they start from a certain world position, being
initially linked to it; (2) perform or control the needed operations
in a distributed space, which may be branching, stepwise, parallel
and arbitrarily complex, also local and remote; and (3) produce or
supervise concluding results of the scenario embraced, expressed
by control states and values in different points.

3.5 Control states

The following control states can appear after completion of dif-
ferent scenario steps. Indicating local progress or failure, they can
be used for effective control of multiple distributed processes with
proper decisions at different levels. These states are: thru – reflects
full success of the current scenario branch with capability of furt-
her development; done – indicates success of the current scenario
step with its planned termination; fail – indicates non- revocable
failure of the current branch and no possibility of further develop-
ment from the location reached; and fatal – reporting terminal fa-
ilure with nonlocal effect, while triggering massive abortion of all
currently evolving scenario processes and removal of associated
temporary data with them. These control states, appearing in diffe-
rent branches of parallel and distributed scenario at bottom levels,
can be used to obtain generalized control states at higher levels,
up to the whole scenario, in order to make proper decisions for the
further scenario evolution.

3.6 Networked SGL interpreter

Communicating Interpreters of SGL can be in arbitrary number
of copies, say, up to millions and billions, which can be effectively
integrated with any existing systems and communications, and
their dynamic networks can represent powerful spatial engines ca-
pable of solving any problems in terrestrial and celestial environ-

ments. Such collective engines can simultaneously execute many
cooperative or competitive tasks without any central resources or
control, as symbolically depicted in figure 11 (SGL interpreters just
named U, as universal computational and management nodes).

Figure 11: SGL interpretation networks as a global world
computer.

As both backbone and nerve system of the distributed interp-
reter, its hierarchical spatial track system dynamically spans the
worlds in which SGL scenarios evolve, providing automatic control
of multiple distributed processes. Self- optimizing in parallel echo
processes, this (generally forest-like) distributed structure provi-
des hierarchical command and control, also remote data and code
access. It supports spatial variables and merges distributed control
states for making proper decisions at different organizational le-
vels. The track infrastructure is automatically distributed between
different active components (humans, robots, computers, smart-
phones, satellites, etc.) during scenario spreading in distributed
environments.

Detailed information on SGT, SGL and its networked in-
terpreter, also solving numerous problems from very different
classes under such approach, can be obtained from many existing
publications, including [7-13], also just by spatial grasp in google.
com.

4. Examples of spatial scenarios in SGL
We will show here some solutions of practical problems from

different areas which are entirely based on the Spatial Grasp model
described in this paper, with explanation of its advantages.

81

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

4.1 Network management

Finding any path between nodes a and f in a network of figure 12,
as follows.

Figure 12: Finding a path between two network nodes.

hop(a); repeat(hopfirst(links(all));

if(NAME == f, done)).

We may decide to collect the passed path and organize its output
at the destination node, as follows.

hop(a); frontal(Path = NAME); repeat(hopfirst(-

link(any)); Path &&= NAME;

if(NAME == f, (output(Path); done))).

Arbitrary path found between these two nodes (may not be
optimal like the one in Figure 12) is printed in node f like:

(a, d, h, f). Such path can also be returned and issued in
the starting node a as:

hop(a); frontal(Path = Name); output(repeat

(hopfirst(link(any)); Path &&= NAME;

if(NAME == f, done(Path)))).

SG solution analysis

The described solutions on a distributed network are entirely
based on its spatial navigation by SGL self-evolving scenarios with

finding a path between the nodes needed, also collecting and print-
ing this path in its final or starting nodes. Such integral parallel and
fully distributed solutions are much superior to traditional meth-
ods of representing distributed computations in the form of mul-
tiple parts or agents exchanging messages.

Many more on the network management under SGT can be
found at [7,8,12,14].

4.2 Human-robotic collectives

We can easily organize any collectives from human, robotic or
mixed units operating under spatial scenarios, as symbolically
shown in figure 13.

Randomized collective group movement, starting in any node,
with minimal Range distance allowed between units when moving,
can be organized as follows, where each unit by discovering some
dangerous objects or situations issues a corresponding alarm mes-
sage or sound.

82

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

Figure 13: Unified human-robotic teams with collective
scenario injected from any unit.

SG solution analysis

This scenario starts from any human or robotic unit and then
covers all reachable units by flooding them in parallel, regardless
of their number which may be arbitrarily large and not known in
advance. It immediately tasks each reached unit with the collective
movement and observation functionality, without waiting for full
completion of the scenario distribution. This holistic self-evolving
spatial solution is also much superior to traditional parallel com-
putations representing the system as a collection of agents ex-
changing messages.

Many more on collective behavior under SGT can be found at [7-
10].

4.3 Space debris collection

Dealing with such complex problem as huge amount of space
debris can be possible only by using large constellations of special
cleaning (like de-orbiting) satellites working together, see figure
14. The following scenario is launched from some ground station
G2 and enters any currently reachable satellite, after which floods
the whole constellation by direct inter-satellite links in an attempt
to find a suitable cleaner-satellite for the removal of junk initially
given by its parameters detected by G2.

hop(G2);

frontal(Details) = find_select(radar, junk, TIME);

hop_first(any_cleaner, radar);

Figure 14: Debris removal by self-organized network of
cleaning satellites.

repeat(

Snapshot = parameters(closest_junk, seen);

 if(match(Details, Snapshot),

(deorbit(Snapshot); abort));

update(Details, TIME);

hop_first(all_cleaners, direct_links)).

SG solution analysis

This is highly dynamic and fully distributed solution, where sat-
ellites are moving with high speed and possibly in different orbits
or even directions. The self-spreading holistic scenario can oper-
ate with any constellation topologies which may rapidly change in
time, and also any number of currently available satellites, which
may not be known in advance. This SG solution is also much su-
perior to traditional representation of a distributed system in the
form of collection of agents exchanging messages, where, more-
over, such a system in this dynamic multiple satellite case cannot
be defined in advance at all.

Many more on debris and also management of multiple satellite
architectures can be found at [17-22].

5. Conclusion
This concludes the paper by summarizing the obtained results,

which are confirming uniqueness and power of the model propo-
sed, where instead of representing distributed systems as collecti-
on of parts or agents exchanging messages, we have their integral,
holistic and semantic level solutions as self-evolving and self-mat-
ching spatial patterns, which can often simplify and shorten global
management code up to a hundred times in comparison with other
approaches and languages. We can also mention here the new
activities planned in this area, including new SGT implementati-
on, which can be done even within traditional university environ-
ments as for the previous technology versions, new patenting of
the SG model as a further development of the previous patent [13],
and also new book on using SG model and the resultant technology
for management of integrated terrestrial and celestial systems.
Such a book is currently in preparation under the contract with

Bibliography
1.	 Algorithm.

83

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

https://en.wikipedia.org/wiki/Algorithm

2.	 Definition of ALGORITHM. Merriam-Webster Online Diction-
ary.

3.	 Goodrich MT and Tamassia R. “Algorithm Design: Foundations,
Analysis, and Internet Examples”. John Wiley and Sons, Inc
(2018).

4.	 Heuristic.

5.	 Flowchart.

6.	 A Lynch. Flow Chart Design - How to design a good flowchart,
04/22/2021.

7.	 Sapaty PS. “Symbiosis of Real and Simulated Worlds under Spa-
tial Grasp Technology”. Springer (2021): 251.

8.	 Sapaty PS. “Complexity in International Security: A Holistic
Spatial Approach”. Emerald Publishing (2019):160.

9.	 Sapaty PS. “Holistic Analysis and Management of Distributed
Social Systems”. Springer (2018): 234.

10.	 Sapaty PS. “Managing Distributed Dynamic Systems with Spa-
tial Grasp Technology”. Springer (2017): 284.

11.	 Sapaty PS. “Ruling Distributed Dynamic Worlds”. New York:
John Wiley and Sons (2005): 255.

12.	 Sapaty PS. “Mobile Processing in Distributed and Open Envi-
ronments”. New York: John Wiley and Sons (1999): 410.

13.	 Sapaty PS. “A distributed processing system”. European Patent
N 0389655, Publ. 10.11.93, European Patent Office 35.

14.	 PS Sapaty. “Global Network Management under Spatial Grasp
Paradigm, Global Journal of Researches in Engineering”. Jour-
nal of General Engineering 20.5 (2020):58-69.

15.	 PS Sapaty. “Spatial Management of Large Constellations of
Small Satellites”. Mathematical Machines and Systems 2(2021).

16.	 Sapaty PS. “Global Management of Space Debris Removal Un-
der Spatial Grasp Technology”. Acta Scientific Computer Sci-
ences 3.7 (2021).

17.	 Space Debris.

18.	 Space Debris, NASA Headquarters Library.

19.	 Deorbit Systems, National Aeronautics and Space Administra-
tion, Nov 28 (2020).

20.	 Y Chen., et al. “Optimal mission planning of active space debris
removal based on genetic algorithm”. IOP Conf. Series: Materi-
als Science and Engineering 715 (2020): 012025.

21.	 PS Sapaty. “Managing multiple satellite architectures by spa-
tial grasp technology”. Mathematical Machines and Systems 1
(2021): 3-16.

22.	 PS Sapaty. “Spatial Management of Large Constellations of
Small Satellites”. Mathematical Machines and Systems 2 (2021).

23.	 Sapaty РS. “Spatial Grasp as a Model for Space-based Control
and Management Systems”. Mathematical Machines and Sys-
tems 1 (2021): 135-138.

Volume 3 Issue 9 September 2021
© All rights are reserved by Peter Simon Sapaty.

84

Spatial Grasp Model for Management of Dynamic Distributed Systems

Citation: Peter Simon Sapaty. “Spatial Grasp Model for Management of Dynamic Distributed Systems". Acta Scientific Computer Sciences 3.9 (2021):
74-84.

https://www.merriam-webster.com/dictionary/algorithm
https://www.merriam-webster.com/dictionary/algorithm
https://web.archive.org/web/20150428201622/http:/ww3.algorithmdesign.net/ch00-front.html
https://web.archive.org/web/20150428201622/http:/ww3.algorithmdesign.net/ch00-front.html
https://web.archive.org/web/20150428201622/http:/ww3.algorithmdesign.net/ch00-front.html
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Flowchart
https://www.edrawsoft.com/flowchart-%20design.html?gclid=Cj0KCQjw5auGBhDEARIsAFyNm9H7cWvesxjTsposJTaD890zBspEUDA18dHi_9R_GChiyzitwg%20pYCu4aAjutEALw_wcB
https://www.edrawsoft.com/flowchart-%20design.html?gclid=Cj0KCQjw5auGBhDEARIsAFyNm9H7cWvesxjTsposJTaD890zBspEUDA18dHi_9R_GChiyzitwg%20pYCu4aAjutEALw_wcB
https://engineeringresearch.org/index.php/GJRE/article/view/2082/2013
https://engineeringresearch.org/index.php/GJRE/article/view/2082/2013
https://engineeringresearch.org/index.php/GJRE/article/view/2082/2013
https://actascientific.com/ASCS/ASCS-03-0135.php
https://actascientific.com/ASCS/ASCS-03-0135.php
https://actascientific.com/ASCS/ASCS-03-0135.php
https://en.wikipedia.org/wiki/Space_debris
https://www.nasa.gov/centers/hq/library/find/bibliographies/space_debris
https://www.nasa.gov/smallsat-%20institute/sst-soa-2020/passive-deorbit-systems
https://www.nasa.gov/smallsat-%20institute/sst-soa-2020/passive-deorbit-systems
https://iopscience.iop.org/article/10.1088/1757-%20899X/715/1/012025/pdf
https://iopscience.iop.org/article/10.1088/1757-%20899X/715/1/012025/pdf
https://iopscience.iop.org/article/10.1088/1757-%20899X/715/1/012025/pdf
http://www.immsp.kiev.ua/publications/eng/2021_1/
http://www.immsp.kiev.ua/publications/eng/2021_1/
http://www.immsp.kiev.ua/publications/eng/2021_1/
http://www.immsp.kiev.ua/publications/articles/2021/2021_1/Sapaty_book_1_2021.pdf
http://www.immsp.kiev.ua/publications/articles/2021/2021_1/Sapaty_book_1_2021.pdf
http://www.immsp.kiev.ua/publications/articles/2021/2021_1/Sapaty_book_1_2021.pdf

	_GoBack

