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Abstract

More complex distributed and intelligent systems are being developed covering both terrestrial and celestial environments, which 
relate to economy, ecology, communications, security, and defense. Their efficient management, especially in dynamic and unpre-
dictable situations, needs serious investigations and development, even breakthroughs, in scientific and technological areas. Their 
traditional representations as parts operating by certain algorithms and exchanging messages are becoming inadequate as such sys-
tems need much stronger integration in order to operate as holistic organisms pursuing global and often varying goals. The current 
paper is just oriented on a completely different paradigm for organization and management of large dynamic and distributed systems, 
which extends and transforms the notion of algorithm for not only describing knowledge processing logic but also allowing it to di-
rectly exist, propagate, and operate as an integral whole in any distributed spaces, which may be constantly changing their volumes 
and structures. Having some organizational features related to powerful viruses, recent pandemics too, this ubiquitous Spatial Grasp 
(SG) model is presented in the paper on philosophical and implementation levels, with introduction of special spatio-charts for its 
exhibition and studies, which are extending traditional algorithmic flowcharts towards working directly in distributed spaces. Using 
this model for the creation of resultant Spatial Grasp Technology and its basic Spatial Grasp Language, already described in detail in 
numerous publications, is also briefed. Elementary examples of dealing with distributed networks, collective human-robotic beha-
vior, and removal of space debris by constellation of cleaning satellites explain SG advantages over traditional system organizations.

Keywords: Algorithm; Flowchart; Distributed Systems; Spatial Grasp; Spatio-chart; Holistic Solutions; Network Management; Col-
lective Behavior; Space Debris

1. Introduction
More and more complex distributed and intelligent systems are 

being developed worldwide covering both terrestrial and celesti-
al environments, as well as their integration, which relate to eco-
nomy, ecology, communications, security, defense, and many other 
areas. Their efficient management, especially in dynamic, unpre-
dictable, and crises-prone situations, needs serious investigations 
and development, often breakthroughs, in political, scientific, te-
chnological, and industrial areas. Their traditional representations 

as parts or agents operating by certain individual algorithms and 
exchanging messages with other parts are becoming inefficient 
and inadequate, as such systems need much stronger integration in 
order to operate as super-summative holistic organisms pursuing 
global philosophy and rapidly changing goals. The current paper is 
just oriented on a completely different paradigm for organization 
and management of large dynamic and distributed systems, which 
extends and transforms the notion of algorithm for not only desc-
ribing knowledge processing logic but also allowing it to directly 
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exist, propagate, and operate as an integral whole in any distribu-
ted spaces. Having some organizational, self-spreading, self-rep-
licating and self- recovering features in some sense resembling 
powerful world viruses, recent pandemics too, this ubiquitous Spa-
tial Grasp (SG) model is presented in the paper on philosophical, 
methodological, and implementation levels. The rest of the paper 
is organized as follows.

Section 2 describes basics of Spatial Grasp model and how it 
differs from conventional algorithm, also introduces new type of 
a chart called spatio-chart as a further development of traditional 
flowcharts for describing and analyzing scenarios operating direct-
ly in distributed spaces. It shows how collections of actions can be 
described in SG and exhibited by spatio-charts, including the use 
of control rules supervising repetition, sequencing and branching 
in the spatial scenarios, with such organizations capable of being 
unlimitedly hierarchical and recursive.

Section 3 briefs the main elements of Spatial Grasp Technology 
(SGT) and its high-level recursive Spatial Grasp Language (SGL) 
based on SG philosophy, with already existing numerous publica-
tions, books including, on this approach, its implementation and 
numerous applications. This includes different types of distributed 
worlds GGT operates with, types of spatial variables of SGL, some 
of which may be stationary while others mobile, main types of SGL 
rules which can be nested, different control states provided by SGL 
scenarios propagation, and general organization of the distributed 
and networked SGL interpreter.

Section 4 provides examples of solving different distributed 
problems under SG model which confirm its advantages in com-
parison with traditional parallel and distributed system organi-
zations. These include network management with finding and 
collecting a path between different nodes with printing it at the 
final or starting node, organizing collective behavior of a mixed 
human-robotic team, and also using large constellation of debris-c-
leaning satellites operating together under the global goal. In all 
these examples the solutions are provided by spatial SGL scenarios 
self-evolving and matching distributed dynamic spaces, which even 
cannot be classified as systems in advance of these solutions, and 
should be absolutely needed by any other approaches.

Section 5 concludes the paper summarizing obtained results 
and mentioning the new activities planned in this area, including 

new SGT implementation, new patenting of the SG model, and also 
new book on using SG model and the resultant technology for ma-
nagement of integrated terrestrial and celestial systems, which is 
currently in preparation.

2. Spatial grasp versus traditional algorithm
2.1 Algorithm and flowchart

Algorithm is a finite sequence of well-defined, computer-imp-
lementable instructions, typically to solve a class of specific prob-
lems or to perform a computation [1-3]. Algorithms are always 
unambiguous and are used as specifications for performing cal-
culations, data processing, automated reasoning, and other tasks. 
In contrast, a heuristic is a technique used in problem solving that 
uses practical methods and/or various estimates in order to pro-
duce solutions that may not be optimal but are sufficient given the 
circumstances [4].

A flowchart is a type of diagram that represents a workflow or 
process [5,6]. A flowchart can also be defined as a diagrammatic 
representation of an algorithm, a step-by-step approach to solving 
a task. The flowchart shows the steps as boxes of various kinds, and 
their order by connecting the boxes with arrows. Flowcharts are 
used in analyzing, designing, documenting or managing a process 
or program in various fields. An example of a simple flowchart is in 
figure 1 (where a processing step is usually depicted as a rectangu-
lar box and a decision as a diamond).
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Figure 1: Example of a flowchart.



2.2 The simplest spatial grasp explanation

SG [7-13] operates by spatial scenarios self-spreading in physi-
cal and virtual worlds while creating, matching, transforming and 
managing them. The interpreted scenario text is not staying in any 
fixed point or points in space but rather spreads itself while car-
rying further its remainder and often omitting the utilized parts.

Single operation

Imagine you are staying in some point of space (which may be a 
paper sheet, computer memory, or any terrestrial or celestial envi-
ronment) and just writing:

44.55

You will get this value in this point which may stay there indefi-
nitely and without any name. Another example:

5 + 6.

This operation will produce the value 11 which will also stay in 
this point without a name too. One more:

R = 5 + 6.

The result 11 will be assigned to a variable R and will stay there 
under this name. It may be subsequently accessed by the name R 
if to come into this point again. Other example, but now related to 
physical space: move(x55, y88).

From the starting point in space, you will move to another point 
having certain x-y coordinates, and will stay there. If you want to 
create a node named John in the virtual space, with staying indefini-
tely in this node, just write:

create(‘John’).

If the node John already exists, you may directly hop into it from 
the starting point, as follows.

hop(‘John’).

A single action may produces a multiple result, for example, 
by hopping simultaneously to virtual nodes John, Peter, and Alex, 
if they already exist, as:

hop(‘John’, ‘Peter, ‘Alex’).

Or moving in parallel to a number of physical world locations 
from a starting point, as follows:

move((x55, y88), (x5, y12), (x105, y92)).

Generalizing the above mentioned and other possible examples 
with a single action, let the latter be named as g and applied in 
some Start point, we can receive the result in some region of 
space (consisting of computational, virtual, physical or combined 
points), symbolically named (but in capital) as G too, which may 
include the Start position, as shown in figure 2.

We will be using such space processing and navigation charts 
in the subsequent examples too, calling such form of exhibition as 
spatio-chart (or just spatiochart) versus traditional flowchart.

Multiple operations

Let us consider now a sequence of possible operations in space, 
with using semicolon as a delimiter between them. Assigning to a 
variable R    and then changing its value, with finally staying in the 
same position in space, can be as follows:

R = 15; R = R + 10.

Hopping to virtual node John and then creating a new node 
Peter with relation to it from John  as of his

father, with final staying in node Peter:

hop(‘John’); create(link(‘father’), node(‘Peter’)).
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Hopping to virtual node Peter   and then creating a friend relation 
to the already existing node John, with final staying in node John:

hop(‘Peter’); linkup(‘friend’, node(‘John’)).

Moving to a physical location by its absolute coordinates 
and then twice shifting to other locations by given    coordinate 
changes, with final staying in the node reached by the second shift:

move(x55, y88); shift(x11, y22); shift(x9, y45).

The mentioned and any other examples with sequences of acti-
ons gi applied from a Start position, with the next action gi + 1   origi-
nating in all or some space positions reached by the previous action 
gi, can be represented just as:

g1; g2; g3.

Their collective operation is also shown as a spatio-chart in fi-
gure 3 with regions reached by actions gi named as Gi (which may 
generally include positions covered by the previous actions, the 
Start including). This also takes into account that the rest of the 
sequence has to propagate in space for delivering descriptions of 
further actions, and the already used operations are removed from 
the sequence.

Figure 3: Spatio-chart for a sequence of actions in space.

In figure 4, detailing the sequence of operations of figure 3, it is 
shown that the movement from regions Gi  to Gi+1   can be made in 
parallel from different points of Gi (from the same points potentially 
too, as gi may themselves represent parallel operations), so the 
operational sequences in reality can be replicated at any stage of 
their development.

Figure 4: Possible code replications during parallel space 
navigation.

2.3 Using control rules
For sequencing

In a more advanced organization of the sequence of operations 
we may use different control rules embracing them, which 
can provide additional, often nonlocal, functionality and more 
advanced processing and coverage of distributed spaces, as follows 
for rule r1  and the operational sequence considered before:

r1(g1; g2; g3).

The rule will be activated in the position where the whole sequ-
ence is applied, like Start as before. It then may influence the whole 
sequence of embraced operations with receiving a feedback from 
its entire development (if such feedback needed by the rule’s func-
tionality), as shown in figure 5.

Figure 5: Spatio-chart with a control rtule.

The rule, for example, may represent such functionality as print, 
create, repeat and many other cases of nonlocal management and 
control. Let us consider a few examples in more detail.
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r1 print.

By this rule, the results obtained by the mentioned sequence of 
operations (and not only by its last operation g3, but also by g1  
and g2  classified as final results too) can be returned to the Start 
position and printed there, with final staying in the Start.

r1  create.

This rule can supply the space propagating operations, especial-
ly those describing movement in virtual spaces, with global power 
of creating these spaces or their individual elements if they are 
absent during this movement and therefore do not allow it to pro-
ceed further. This means that the same written sequence of actions 
gi can work in both space navigation and space creation modes, 
depending on circumstances.

r1 repeat.

Under this rule, the sequence of operations gi at first is proces-
sed as usual, step by step, until the rest of it becomes empty, but 
after this, it starts to work from the very beginning again, as shown 
in figure 6. The repeat rule always leaves the already processed 
operations in their sequence (which are not removed as without 
it), with the whole sequence repeatedly propagating and working 
in space until this is possible.

Figure 6: Repeated navigation of space.

The operational sequence can be embraced by any number of 
control rules, which can be nested, as follows for rules r1    and r2 
and also shown in figure 7 (with r1 activated in the Start  position, 
and r2  in the positions in space G1  (which may be more than one) 
reached by operation g1.

r1(g1; r2(g2; g3)).

Figure 7: Nested control rules.

A few examples of combination of such nested rules as follows:

r1  create   r2  repeat

r1  print    r2  create

r1  repeat   r2  repeat

r1  repeat   r2  print

For the last case, printing the results obtained by actions g2 and 
g3 will be organized in all positions of the region G1  reached by g1 
(which, moreover, can be repeated by rule r1    at the higher level) 
and not in Start  as for r1 in the second case).

For branching

Other rules may allow branching in space, with different 
branches (separated by comma) developing from the same 
positions in space (as follows and also shown in figure 8, where r1 

Figure 8: Branching under control rule.
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is used to control two branches, and r2 to manage the sequence of 
operations belonging to the second branch).

r1(g1, r2(g2; g3)).

Possible meaning of r1 and r2 may be as follows, with both rules 
activated in the Start position.

r1  or	  r2  create.

Rule r1, activating two branches in any order or in parallel from 
the same Start position, selects the first one in time replying with 
a positive termination result, considering its space locations and 
data obtained there as the final result, while ignoring all achieve-
ments of another branch. Rule r2 covers the sequence of operati-
ons g2 and g3 of the second branch, supplying them with creative 
power during space navigation (will be completed and accepted if 
classified as the resultant branch by r1).

r1  if	 r2  print.

Rule r1 first launches branch g1, and only if and after it terminates 
with a positive result, activates the second branch with g2 and g3  
embraced by rule r2, which organizes printing their final results 
in the Start   position with staying there, the latter considered as 
holding the final result. If g1 results with failure, the final stay will 
be in the Start   too but without any new result.

r1  and r2  repeat.

Rule r1 activates the two branches in any order or in parallel, 
and only after both branches reply with their final success, r1 can 
confirm the whole success of this mission (with r2 organizing repe-
titive development of the sequence of two embraced operations). 
The successful positions reached in space by both branches will 
be considered as holding the final results of the scenario, with sub-
sequent saying in them indefinitely. If any branch replies with fai-
lure, the development of the second branch will be terminated as 
soon as possible, as not needed any more. After r1  fails, there will 
be no position to stay in space further, with Start just abandoned.

We can also consider the development of operations g2 and 
g3 not in a sequence but in branching mode too, as follows, also 
depicted in figure 9, with both rules activated in the Start position, 
where r1 is embracing r2 and all   operations r2  coordinates, i.e. g2 
and g3.

Figure 9: Nested branching.

r1(g1, r2(g2, g3)).

Possible examples of combinations of these rules, hopefully cle-
ar enough without further explanation.

r1  or    r2  or

r1  if    r2  and

r1  and   r2  or

r1  and   r2  and

2.4 Recursive scenarios

In figures 2 to 8 we had in mind that operations g1, g2, g3 could 
be of any complexity. This means that each one itself could be subs-
tituted by the whole scenarios shown in all these figures, for which 
again each operation could be substituted by the whole scenario 
again, and so on, with such recursion potentially to any depth. If, 
for example, to substitute operation g2 of the previous scenario 
r1(g1, r2(g2, g3)) shown in figure 8 with the scenario (g4 ; r3(g5, 
g6)) enclosed in parentheses as a whole unit, we will receive a more 
detailed organization with the resultant combined scenario as fol-
lows, where its spatial development is shown in figure 10: 

r1(g1, r2((g4; r3(g5; g6)), g3)).

We have shown only very few examples for structuring of spa-
tial scenarios and rules coordinating their collections, with using 
semicolon to separate succeeding each other operations, and com-
ma for branches. We may also have comma as the only separator by 
substituting the sequences of components separated by semicolon 
with another rule advance covering them, with comma being se-
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Figure 10: Spatio-chart recursion.

parator too, as follows, thus resulting in uniformity of all possible 
spatial scenarios.

g1; g2; g3   advance(g1, g2, g3).

This may sometimes be less convenient to write, but the rule 
advance in general provides additional and very useful options for 
sequencing of operations, as described in the full SGL.

In general, the Spatial Grasp model is much more advanced, di-
verse, and complex, with capability of returning the obtained re-
sults and control states whatever remote and multiple they might 
appear. It also allows to make any decisions for the further space 
navigation, creates dynamic operational infrastructures capable 
of solving any distributed problems, also effectively mimicking or 
implementing any other models and approaches (Petri nets and 
neural nets including), and so on.

3. Spatial grasp technology (SGT) basics
3.1 The spatial grasp language

The mentioned above and many other SG model’s capabilities 
can be expressed by the recursive high level Spatial Grasp Language 
(SGL) in which all spatial scenarios are represented, with its top 
level syntax following. (The overall SGL scenario is called grasp, 
syntactic categories are shown in italics, vertical bar separates 
alternatives,             parts in braces indicate zero or more repetitions with 
a delimiter at the right if multiple, and constructs in brackets are 
optional).

Figure a

3.2 The worlds SGT operates with

SGT allows us to directly operate with the following world rep-
resentations: Physical World (PW), considered as continuous and 
infinite, where each point can be identified and accessed by physi-
cal coordinates; Virtual World (VW), which is discrete and consists 
of nodes and semantic links between them; and Executive world 
(EW) consisting of active “doers” with communication possibili-
ties between them. Different kinds of combination of these worlds 
can also be possible within the same formalism, as follows: Virtu-
al-Physical World (VPW) where individually named VW nodes can 
associate with coordinates of certain PW points or any its regions; 
Virtual- Execution World (VEW), where doer nodes may have 
special names assigned to them and semantic relations in betwe-
en, similarly to pure VW nodes; Execution-Physical World (EPW) 
can have doer nodes associated with certain PW coordinates; and 
Virtual-Execution-Physical World (VEPW) combining all features 
of the previous cases.

3.3 SGL variables

Spatial variables, stationary or mobile, which can be used in 
fully distributed physical, virtual or executive environments, are 
effectively serving multiple cooperative processes under the uni-
fied control. These are: Global variables (most expensive), which 
can serve any SGL scenarios and be shared by them, also by the-
ir different branches; Heritable variables appearing within a sce-
nario step and serving all subsequent, descendent steps; Frontal 
variables serving and accompanying the scenario evolution, being 
transferred between subsequent steps; Environmental variables 
allowing us to access, analyze, and possibly change different featu-
res of physical, virtual and executive words during their navigation; 
and finally, Nodal variables as a property of the world positions 
reached by scenarios and shared with other scenarios in same po-
sitions.
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3.4 SGL rules

SGL rules, capable of representing any actions or decisions, be-
long to the following main categories: (a) hierarchical fusion and 
return of potentially remote data; (b) distributed control, sequenti-
al and/or parallel, in both breadth and depth of the scenario evolu-
tion; (c) a variety of special contexts detailing navigation in space, 
also clarifying character and peculiarities of the embraced opera-
tions and decisions; (d) type and sense of a value or its chosen 
usage for guiding automatic language interpretation; and (e) indi-
vidual or massive creation, modification, or removal of nodes and 
connecting links in distributed knowledge networks, allowing us 
to effectively work with arbitrary knowledge structures. All rules 
are pursuing the same unified ideology and organizational sche-
me, as follows: (1) they start from a certain world position, being 
initially linked to it; (2) perform or control the needed operations 
in a distributed space, which may be branching, stepwise, parallel 
and arbitrarily complex, also local and remote; and (3) produce or 
supervise concluding results of the scenario embraced, expressed 
by control states and values in different points.

3.5 Control states

The following control states can appear after completion of dif-
ferent scenario steps. Indicating local progress or failure, they can 
be used for effective control of multiple distributed processes with 
proper decisions at different levels. These states are: thru – reflects 
full success of the current scenario branch with capability of furt-
her development; done – indicates success of the current scenario 
step with its planned termination; fail – indicates non- revocable 
failure of the current branch and no possibility of further develop-
ment from the location reached; and fatal – reporting terminal fa-
ilure with nonlocal effect, while triggering massive abortion of all 
currently evolving scenario processes and removal of associated 
temporary data with them. These control states, appearing in diffe-
rent branches of parallel and distributed scenario at bottom levels, 
can be used to obtain generalized control states at higher levels, 
up to the whole scenario, in order to make proper decisions for the 
further scenario evolution.

3.6 Networked SGL interpreter

Communicating Interpreters of SGL can be in arbitrary number 
of copies, say, up to millions and billions, which can be effectively 
integrated with any existing systems and communications, and 
their dynamic networks can represent powerful spatial engines ca-
pable of solving any problems in terrestrial and celestial environ-

ments. Such collective engines can simultaneously execute many 
cooperative or competitive tasks without any central resources or 
control, as symbolically depicted in figure 11 (SGL interpreters just 
named U, as universal computational and management nodes).

Figure 11: SGL interpretation networks as a global world 
computer.

As both backbone and nerve system of the distributed interp-
reter, its hierarchical spatial track system dynamically spans the 
worlds in which SGL scenarios evolve, providing automatic control 
of multiple distributed processes. Self- optimizing in parallel echo 
processes, this (generally forest-like) distributed structure provi-
des hierarchical command and control, also remote data and code 
access. It supports spatial variables and merges distributed control 
states for making proper decisions at different organizational le-
vels. The track infrastructure is automatically distributed between 
different active components (humans, robots, computers, smart-
phones, satellites, etc.) during scenario spreading in distributed 
environments.

Detailed information on SGT, SGL and its networked in-
terpreter, also solving numerous problems from very different 
classes under such approach, can be obtained from many existing 
publications, including [7-13], also just by spatial grasp in google.
com.

4. Examples of spatial scenarios in SGL
We will show here some solutions of practical problems from 

different areas which are entirely based on the Spatial Grasp model 
described in this paper, with explanation of its advantages.
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4.1 Network management

Finding any path between nodes a and f in a network of figure 12, 
as follows.

Figure 12: Finding a path between two network nodes.

hop(a); repeat(hopfirst(links(all));

if(NAME == f, done)).

We may decide to collect the passed path and organize its output 
at the destination node, as follows.

hop(a); frontal(Path = NAME); repeat(hopfirst(-

link(any)); Path &&= NAME;

if(NAME == f, (output(Path); done))).

Arbitrary path found between these two nodes (may not be 
optimal like the one in Figure 12) is printed in node f like:

(a, d, h, f). Such path can also be returned and issued in 
the starting node a as:

hop(a); frontal(Path = Name); output(repeat 

(hopfirst(link(any)); Path &&= NAME;

if(NAME == f, done(Path)))).

SG solution analysis

The described solutions on a distributed network are entirely 
based on its spatial navigation by SGL self-evolving scenarios with 

finding a path between the nodes needed, also collecting and print-
ing this path in its final or starting nodes. Such integral parallel and 
fully distributed solutions are much superior to traditional meth-
ods of representing distributed computations in the form of mul-
tiple parts or agents exchanging messages.

Many more on the network management under SGT can be 
found at [7,8,12,14].

4.2 Human-robotic collectives

We can easily organize any collectives from human, robotic or 
mixed units operating under spatial scenarios, as symbolically 
shown in figure 13.

Randomized collective group movement, starting in any node, 
with minimal Range distance allowed between units when moving, 
can be organized as follows, where each unit by discovering some 
dangerous objects or situations issues a corresponding alarm mes-
sage or sound.
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scenario injected from any unit.



SG solution analysis

This scenario starts from any human or robotic unit and then 
covers all reachable units by flooding them in parallel, regardless 
of their number which may be arbitrarily large and not known in 
advance. It immediately tasks each reached unit with the collective 
movement and observation functionality, without waiting for full 
completion of the scenario distribution. This holistic self-evolving 
spatial solution is also much superior to traditional parallel com-
putations representing the system as a collection of agents ex-
changing messages.

Many more on collective behavior under SGT can be found at [7-
10].

4.3 Space debris collection

Dealing with such complex problem as huge amount of space 
debris can be possible only by using large constellations of special 
cleaning (like de-orbiting) satellites working together, see figure 
14. The following scenario is launched from some ground station 
G2 and enters any currently reachable satellite, after which floods 
the whole constellation by direct inter-satellite links in an attempt 
to find a suitable cleaner-satellite for the removal of junk initially 
given by its parameters detected by G2.

hop(G2);

frontal(Details) = find_select(radar, junk, TIME); 

hop_first(any_cleaner, radar);

Figure 14: Debris removal by self-organized network of  
cleaning satellites.

repeat(

Snapshot = parameters(closest_junk, seen);

 if(match(Details, Snapshot),

(deorbit(Snapshot); abort)); 

update(Details, TIME); 

hop_first(all_cleaners, direct_links)).

SG solution analysis

This is highly dynamic and fully distributed solution, where sat-
ellites are moving with high speed and possibly in different orbits 
or even directions. The self-spreading holistic scenario can oper-
ate with any constellation topologies which may rapidly change in 
time, and also any number of currently available satellites, which 
may not be known in advance. This SG solution is also much su-
perior to traditional representation of a distributed system in the 
form of collection of agents exchanging messages, where, more-
over, such a system in this dynamic multiple satellite case cannot 
be defined in advance at all.

Many more on debris and also management of multiple satellite 
architectures can be found at [17-22].

5. Conclusion
This concludes the paper by summarizing the obtained results, 

which are confirming uniqueness and power of the model propo-
sed, where instead of representing distributed systems as collecti-
on of parts or agents exchanging messages, we have their integral, 
holistic and semantic level solutions as self-evolving and self-mat-
ching spatial patterns, which can often simplify and shorten global 
management code up to a hundred times in comparison with other 
approaches and languages. We can also mention here the new 
activities planned in this area, including new SGT implementati-
on, which can be done even within traditional university environ-
ments as for the previous technology versions, new patenting of 
the SG model as a further development of the previous patent [13], 
and also new book on using SG model and the resultant technology 
for management of integrated terrestrial and celestial systems. 
Such a book is currently in preparation under the contract with 
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