
ACTA SCIENTIFIC COMPUTER SCIENCES

 Volume 2 Issue 4 April 2020

MatBase Metadata Catalog Management

Christian Mancas*
Mathematics and Computer Science Department, Ovidius University, Constanta,
Romania

*Corresponding Author: Christian Mancas, Mathematics and Computer Science
Department, Ovidius University, Constanta, Romania.

Review Article

Received: March 20, 2020

© All rights are reserved by Christian
Mancas.

Introduction

Abstract

Keywords: Metadata and Data Quality; Semantic Approaches; Metadata Management; Metadata for Business Process Modeling;
Data Structures and Algorithms for Data Management; DBMS Engine Architectures; (Elementary) Mathematical Data Model; Mat-
Base

MatBase is a prototype intelligent data and knowledge base management system based on the Relational, Entity-Relationship,
and (Elementary) Mathematical Data Models. The latter distinguishes itself especially by its rich panoply of constraint types: 61,
partitioned into three categories (set, containing 16 types, mapping, containing 44 types, and object) and eight subcategories (gen-
eral set, dyadic relation, general mapping, autofunction, general function product, homogeneous binary function product, function
diagram, and object). They provide database and software application designers with the tools necessary for capturing and enforcing
all business rules from any sub-universe of discourse, thus guaranteeing database instances plausibility, a sine qua non condition of
data quality. This mathematical data model also includes Datalog, thus making MatBase also a deductive, so a knowledge base system.
Currently, there are two MatBase versions (one developed in MS Access and the other in MS.NET, using C# and SQL Server), used both
by two software developing companies and during labs of our M.Sc. students within the Advanced Databases lectures and labs, both
at the Ovidius University and at the Department of Engineering in Foreign Languages, Computer Science Taught in English Stream of
the Bucharest Polytechnic University. This paper presents MatBase’s metadata catalog and its management.

MatBase [1-5] is a prototype intelligent Knowledge and Da-
tabase Management System (KDBMS) built on top of an existing
relational DBMS (RDBMS) and based on both the Relational Data
Model (RDM) [2,6,7], the Entity-Relationship one (E-RDM) [2,8,9]
and the (Elementary) Mathematical one ((E)MDM) [1,2,4,5,10-14],
which also embeds Datalog [1,4,6]: its users may define, update,
and delete database (db) schemas in any of these three formal-
isms, which MatBase is automatically translating into the other
two ones.

For keeping track of the managed databases, MatBase has its
own metadata catalog, made of 373 tables and views, which is
based on and managed through the (E)MDM and E-RDM.

Published: March 31, 2020

(E)MDM schemes are quadruples made from:
•	 A finite nonempty collection of sets S, partially ordered by

inclusion,
•	 A finite nonempty set of mappings M defined on and taking

values from sets of S,

A brief introduction to (E)MDM

•	 A finite nonempty set of constraints C over the elements of S
and M, and

•	 A finite set of Datalog programs P associated to the elements
of S and M.

S is partitioned into the following four blocks: object, value, sys-
tem, and computed sets:

•	 Object ones are partitioned into entity (i.e. atomic) and rela-
tionship (i.e. non-functional math relations immune to their
domain permutations). In relational dbs (rdbs) they are im-
plemented as tables.

•	 Value ones are subsets of (programming) data types.
•	 System sets include at least the data types, the empty set, a

distinguished countable set NULLS of null values, and all the
sets of the MatBase metadata catalog.

•	 Computed sets are obtained from all other types of sets by
using semi-naïve sets, functions, and relations algebra op-
erators. In rdbs they are implemented as views.

All mappings in M are defined either on object or on computed
sets not based on value ones. In rdbs they are implemented as ta-
ble/view columns. M is partitioned into the following four blocks:
attributes, structural functions (implemented in rdbs as foreign
keys), system and computed mappings:

Citation: Christian Mancas. “MatBase Metadata Catalog Management”. Acta Scientific Computer Sciences 2.4 (2020): 25-29.

26

MatBase Metadata Catalog Management

•	 Attributes are taking values from value sets.
•	 Structural functions from object ones.
•	 System mappings include unity mappings, canonical projec-

tions and injections.
•	 Computed mappings are obtained from all other types of map-

pings by using semi-naïve sets, functions, and relations alge-
bra operators (e.g. composition, (Cartesian) product, etc.).

C is partitioned into the following three blocks: set, mapping,
and object constraints. Some constraints are associated to corre-
sponding db E-R diagram (E-RD) cycles [8,15]. The simplest cycles
are those of length 1: the autofunctions (i.e. of the type f: A → A).
Cycles of length greater than one are made from nodes of three
types (source, i.e. they are domains of the two mappings that con-
nect them to the cycle, destination, i.e. they are co-domains of the
two mappings that connect them to the cycle, and intermediate, i.e.
they are the domain for one mapping and the co-domain for the
other one that connect them to the cycle) and may only be of the
following three types [4,11]:

•	 Commutative (i.e. having only one source and one destina-
tion nodes).

•	 Circular (i.e. having only intermediate nodes).
•	 General (i.e. any other cycle than those of types commuta-

tive and circular; they have length greater than 3 and at least
two sources and two destinations).

The set constraints include 16 constraint types partitioned into
two blocks: general set and dyadic relation (i.e. binary math rela-
tions defined over a set).

The general set constraints are sub-partitioned into the follow-
ing five blocks: inclusion, equality, disjointness, union, and direct
sum.

Dyadic relation ones (e.g. D ⊂ S2) are sub-partitioned into the
following eleven blocks: reflexivity, irreflexivity, symmetry, asym-
metry, transitivity, intransitivity, Euclideanity, in Euclideanity,
equivalence, acyclicity, and connectivity.

There are 44 mapping constraint types that are sub-partitioned
into the following five blocks: general mapping, autofunction, ho-
mogeneous binary function product (i.e. of the type f • g: A → B2),
general function product, and function diagram.

General mapping constraints are sub-parti¬tioned into the fol-
lowing six blocks: totality (i.e. not null), nonprimeness (i.e. it can-
not be part of any key), one-to-oneness (single key), ontoness, bi-
jectivity, and default value.

Autofunction constraints are sub-partitioned into the
follow¬ing eleven blocks (autofunctions being particular cases of
dyadic relations, for which Euclideanity and connectivity do not
make sense, as they would violate function definition): reflexivity,

irreflexivity, null-reflexivity (i.e. reflexivity for all not null values),
symmetry, asymmetry, null-symmetry (i.e. symmetry for all not
null values), idempotency, anti-idempotency, null-idempotency (i.e.
idempotency for all not null values), acyclicity, and ca¬no¬ni¬cal
subjectivity.

Homogeneous binary function product ones are sub-partitioned
into the following fourteen blocks (note that reflexivity does not
make sense in this context: why would anybody wish to have two
columns of a fundamental table that should store exactly same
values?): irreflexivity, null-reflexivity, symmetry, asym-metry, null-
symmetry, transitivity, intransitivity, null-transitivity, Euclideanity,
in Euclideanity, null-Euclideanity, equivalence, acyclicity, and con-
nectivity.

Function product ones are sub-partitioned into the follow-
ing three blocks: minimal one-to-oneness (concatenated key),
exis¬tence, and nonexistence.

Function diagram constraints include the following ten blocks:
commutativity (equality), anti-commutativity (inequality), local
commutativity (i.e. corresponding compound autofunction re-
flexivity), local anti-commutativity (i.e. corresponding compound
autofunction irreflexivity), local acyclicity (i.e. corresponding com-
pound autofunction acyclicity), local symmetry (i.e. corresponding
compound autofunction symmetry), local asymmetry (i.e. corre-
sponding compound autofunction asymmetry), local idempotency
(i.e. corresponding compound autofunction idempotency), local
anti-idempotency (i.e. corresponding compound autofunction anti-
idempotency), and generalized commutativity (particular case of
an object constraint only involving mappings of a same function
diagram of type general).

Object constraints are closed Horn clauses (i.e. disjunctions of
literals with at most one positive, i.e. unnegated one).

Some of the above constraints are fundamental, while others are
derived: for example, set equality is a derived one (from inclusion),
just as direct sum (from disjointness and union), equivalence (from
reflexivity, symmetry, and transitivity or reflexivity and Euclidean-
ity), totality (from existence), bijectivity (from one-to-oneness and
ontoness), etc. are. Dyadic relation ones can always be considered
as homoge¬neous binary product ones, where the products are
made from their roles (i.e. canonical (Cartesian) projections).

In total, there are only 22 fundamental constraint types in (E)
MDM, the remaining 39 being derived. In fact, of course, as all con-
straints are closed FOPC formulas, only the object constraint is
actually fundamental. However, all relevant well-established fun-
damental math and RDM concepts are considered fundamental in
the (E)MDM too (i.e. inclusion, dyadic relation reflexivity, one-to-
oneness, minimal one-to-oneness, nonprimeness, ontoness, exis-
tence, non-existence, function diagram (conventional) commuta-

Citation: Christian Mancas. “MatBase Metadata Catalog Management”. Acta Scientific Computer Sciences 2.4 (2020): 25-29.

27

MatBase Metadata Catalog Management

tivity, anti-commutativity, and generalized commutativity, as well
as homogeneous binary function product irreflexivity, symmetry,
asymmetry, transitivity, intransitivity, Euclideanity, in Euclideanity,
acyclicity, and connectivity).

All five RDBMS provided constraint types are included in (E)
MDM too: domain (in co-domain definitions) and referential in-
tegrity (from the Key Propagation Principle [2,15,16]) implicitly,
while not null (totality), keys (minimal one-to-oneness), and tu-
ple/check (extended to object constraints) explicitly.

To conclude about constraints, always discovering and enforc-
ing all existing ones in the sub-universes modeled by dbs is crucial:
any existing constraint that is not enforced in a db scheme allows
for storing implausible data in its instances, thus compromising
data quality.

Lot of work has been published on MatBase, the three data
models it provides, and Datalog; e.g. see references of this paper, as
well as their corresponding references.

Related work

The following two sections introduce the MatBase‘s metadata
catalog structure and management, respectively. The paper ends
with conclusion and references.

Paper outline

As for any DBMS/KBMS, MatBase’s metadata catalog is made
of a set of fundamental and temporary hidden tables, accessible,
through a system password, only to MatBase architects and devel-
opers, as well as of a set of views (computed sets), accessible to all
of its users. Just like for any db it manages, they are partitioned into
set categories. For the metadata catalog, these categories are the
following: fundamental sets, computed sets, system sets (e.g. the
empty set, the NULLS set, etc.), fundamental mappings, computed
mappings, system mappings (e.g. cardinal, unity, etc.), constraints,
Datalog programs, E-R diagrams (E-RDs), host objects (e.g. used
MS Access/SQL Server metadata objects).

The fundamental sets category includes the following four ta-
bles: SETS_CATEGORIES (storing the corresponding db, category
name, description, etc.), SETS (storing the corresponding category,
set names, types, categories, descriptions, cardinal, etc.), REL_
SORTS (storing the structure of relationship-type sets, i.e. their
canonical Cartesian projections), and RELATIONSHIPS (storing
constraints for the particular case of the dyadic relationship-type
sets).

The computed sets category includes the following two tables:
*SETS (storing data on computed sets, e.g. their math formula,
their corresponding SQL one, etc.) and CARTES_PROD_COMP
(storing the structure of computed sets of type Cartesian prod-
ucts). Moreover, it includes dozens of views (e.g. for entity-type,

MatBase metadata catalog structure

relationship-type, value-type, computed-type, system-type sets, for
subsets, equal sets, disjoint sets, etc.).

The system sets category includes very many tables: DATABAS-
ES (storing paths, names, types, etc. of managed dbs), LANGUAGES
(storing the languages for which MatBase is localized - currently
English, the default one, French, and Romanian only), DICTIONARY
(storing equivalent words/phrases in all known languages), OP-
ERATORS (storing all 64 MatBase provided operators - be them set,
mapping, algebraic, logic, relational, standard math, or text ones),
MATH_STRINGS (storing math formulas of computed objects),
SQL_STRINGS (storing corresponding SQL ones), FORMS (storing
the set of MS Windows forms built upon tables and views, both as
part of MatBase graphic user interface and as containers of classes
mainly including event-driven methods for enforcing non-relation-
al constraints and dramatically enhancing ergonomy for users),
NULLS, EMPTY, the system data types (BOOLE, NAT, INT, RAT, etc),
etc. It also includes dozens of views (e.g. numeric operators, logic
operators, set operators, etc.).

The fundamental mappings category includes only one table,
namely FUNCTIONS (storing mapping names, domains, codomains,
description, constraints -e.g. totally defined, one-to-one, onto, acy-
clic, etc.-, default, minimum and maximum plausible values, etc.)
and several views (for attributes, structural functions, computed
ones, etc.).

The computed mappings category includes tables *FUNCTIONS
(storing the subset of computed mappings, their math and SQL
formulas, etc.), COMP_FUNCT_COMP (storing the structure of com-
pound mappings), and FUNCT_PRODUCTS (storing the structure of
Cartesian function products). It also includes views (e.g. for func-
tions involved in at least one equality, existence, non-existence, etc.
constraint).

The system mappings category only includes views (e.g. set-
related, mapping-related, logic-related, etc. provided system func-
tions, etc.).

The constraints category contains the largest number of both
tables and views. The main table is CONSTRAINTSET (as CON-
STRAINTS is a reserved table name in MS Access), which stores
corresponding db, constraint names, types, description, associated
set, mapping, E-RD cycle (if any), etc. CONSTRAINT_TYPES stores
the name, abbreviation, subcategory, implying type (if any), etc.
of all 64 constraint types of (E)MDM, plus the two relational ones
(domain and referential integrity) that do not need to be explic-
itly asserted in (E)MDM. CONSTRAINT_CATEGS stores the names
of the four constraint categories: set, mapping, object, and rela-
tional. CONSTRAINT_SUBCATEGS stores the nine corresponding
constraint subcategories: general set and dyadic relation ones (of
the set category), general mapping, autofunction, general func-

Citation: Christian Mancas. “MatBase Metadata Catalog Management”. Acta Scientific Computer Sciences 2.4 (2020): 25-29.

28

MatBase Metadata Catalog Management

tion product, homogeneous binary function product and function
diagram ones (of the mapping category), object, and relational
(the only ones in their corresponding categories). IMPLICATIONS
stores the pairs of constraints <c, c’>, whenever c implies c’.

Then, there are the tables storing data particular to each con-
straint type; for example, INCLUSIONS, SET_EQUALS, DISJOINT-
NESSES, DIRECT_SUMS, UNIONS (storing both sets involved in the
corresponding constraint type), EXIST_CNSTR and NON_EXIST_
CNSTR (storing (non-)existence constraints data), FUNCT_EQUALS
(storing both functions involved in such equalities), etc.

For enforcing constraint sets coherence and minimality [4,17],
there are the following seven tables: THEOREMS (storing the type
of theorems, which can be either incoherence or redundancy, their
name, description, the order in which MatBase applies them, etc.),
SCCOHERENCES (storing the non-trivial combinations of set con-
straints), SCREDUNDANCIES (storing the redundant constraints
in such combinations), MCCOHERENCES (storing the non-trivial
combinations of mapping constraints), MCREDUNDANCIES (stor-
ing the redundant constraints in such combinations), HBRCCO-
HERENCES (storing the non-trivial combinations of homogeneous
binary function products and dyadic relation constraints), and
HBRCCREDUNDANCIES (storing the redundant constraints in such
combinations).

Besides other constraint-related fundamental tables, this cat-
egory also includes dozens of views (e.g. *BijectivityConstraints,
*CanonicalInjections, *CanonicalSurjections, etc.).

The Datalog category includes lot of fundamental tables and
views as well. Main tables in this category are PREDICATES (stor-
ing predicate name and types -either intensional or extensional,
etc.), INF_RULES (storing the inference rules of Datalog programs),
INF_RULES_COMP (storing the structure of the inference rules’
bodies), PROGRAMS (storing the name, description, type -either
system or user-, and associated relational algebra (RA) equation
systems of Datalog programs), PROG_COMPS (storing the infer-
ence rules out of which Datalog programs are made of), EXPRES-
SIONS (the set of algebraic expressions that are part of inference
rules), CONSTANTS, VARIABLES, TERMS, ATOMS, FORMULAS
(storing the corresponding components of algebraic expressions,
respectively), RA_EXPRS (storing the subset of RA expressions),
RAEQUATIONS (storing the RA equations corresponding to Data-
log inference rules), RAEQSYSTEMS (storing the RA equation sys-
tems corresponding to Datalog programs), and RAESCOMP (stor-
ing the structure of RAEQSYSTEMS, i.e. the RA equations that are
making them up).

Among the views from this category, the most used ones are
those of the subsets of extensional and intensional predicates, re-
spectively.

The E-RDs category includes the fundamental tables DIAGRAMS
(storing the corresponding dbs, names, descriptions, correspond-
ing jpg file names and paths of the E-RDs, etc.), DIAGRAM_O_COMP
(storing the object sets that are part of E-RDs, their position, sizes,
etc.), DIAGRAM_A_COMP (storing the structural functions that are
arrows of E-RDs, their position, sizes, etc.), and ELLIPSES (stor-
ing the attributes that are part of E-RDs, their position, sizes, etc.).
Then, there are temporary tables filled when E-RD cycles are de-
tected [18], e.g. ERDCycles, ERDNodes, ERDEdges, etc. There are
also views in this category, e.g. ERDCyclesComposedMappings,
ERDEdgesDuplicates (showing all E-RD cycles in which edges are
part of), etc.

Finally, the host category contains all tables and views of the un-
derlying DBMS (MS Access or SQL Server) metadata catalogs that
MatBase accesses

MatBase metadata catalog was designed and is managed only in
(E)MDM. As for its development, a very small nucleus (SETS, FUNC-
TIONS, CONSTRAINTS, PROGRAMS, INF_RULES, OPERATORS, etc.)
was implemented manually; then, all the rest was generated by this
nucleus as its developers added metadata on the rest of the sets,
functions, and constraints.

MatBase metadata catalog management

The main MatBase metadata management tasks are:

•	 Assist users in creating, updating, and deleting db schemes
in both (E)MDM, E-RDM and RDM.

•	 Assist users in browsing, adding, updating and deleting
data instances.

•	 Automatically generate standard MS Windows forms and
their classes containing needed methods to enforce non-
relational constraints.

•	 Automatically generate E-RDs from (E)MDM schemes and
vice-versa.

•	 Import legacy dbs and generate corresponding (E)MDM
schemes.

•	 Export (E)MDM schemes and their instances in both XML,
HTML, DOCX, and PDF files.

•	 Assist users in detecting all existing keys for any object set
[19].

•	 Detect and categorize all cycles in E-RDs [18].
•	 Assist users in analyzing E-RD cycles [12].
•	 Automatically detect incoherencies in constraint sets and

assist users in removing them [4].
•	 Automatically detect and remove redundant constraint en-

forcement [4].
•	 Assist users in managing and running their Datalog pro-

grams [1,4].

Conclusion
Data quality is a crucial dimension of today’s data management.

All constraints (which formalize business rules) that are governing

Citation: Christian Mancas. “MatBase Metadata Catalog Management”. Acta Scientific Computer Sciences 2.4 (2020): 25-29.

29

MatBase Metadata Catalog Management

Bibliography

•	 Prompt Acknowledgement after receiving the article
•	 Thorough Double blinded peer review
•	 Rapid Publication
•	 Issue of Publication Certificate
•	 High visibility of your Published work

Assets from publication with us

Website: www.actascientific.com/
Submit Article: www.actascientific.com/submission.php
Email us: editor@actascientific.com
Contact us: +91 9182824667

the sub-universes modeled by dbs should be enforced in the cor-
responding dbs’ schemas: otherwise, their instances might be im-
plausible. As [15] puts it in its 10th rule (Data Integrity Is Its Own
Reward) “each 1% data integrity failures will double the amount
of time you spend troubleshooting them” and in its 11th one (The
Data Integrity Tipping Point) “any database which contains 20%
or more untrustworthy data is useless and will cost less to replace
from source data than to fix”. Not only in our opinion, today’s busi-
nesses cannot be successful if their data is not almost 100% trust-
worthy.

Consequently, (E)MDM, a semantic approach to data modeling,
provides very many constraint types, much more than any other
data model, and MatBase, the prototype KDBMS built on it (as well
as on the E-RDM and RDM), is offering them to db designers and
users. This is done based on a complex metadata catalog made of
over 370 tables and views. This catalog was designed, even par-
tially implemented, and managed through the (E)MDM interface
of MatBase.

1.	 Mancas C and Dragomir S. “MatBase Datalog Subsystem Meta-
catalog Conceptual Design”. In: Proceedings IASTED DBA
2004 Conference on Software Eng and App (2004): 34-41.

2.	 Mancas C. “Conceptual Data Modeling and Database Design:
A Completely Algorithmic Approach”. Volume I: The Shortest
Advisable Path”. Apple Academic Press/CRC Press (Taylor and
Francis Group: Waretown, NJ (2015).

3.	 Mancas C. “Mat Base - a Tool for Transparent Programming
while Modelling Data at Conceptual Levels”. In: Proceedings
5th International Conference on Computer Science, Informa-
tion Technology CSITEC (2019): 15-27.

4.	 Mancas C. “Conceptual Data Modeling and Database Design:
A Completely Algorithmic Approach”. Volume II: Refinements
for an Expert Path. Apple Academic Press/CRC Press Taylor
and Francis Group: Waretown, NJ (2020).

5.	 Mancas C., et al. “On Modeling First Order Predicate Calculus
Using the Elementary Mathematical Data Model in Mat Base
DBMS”. In: Proceedings 21st IASTED International Conference
on Applied Informatics (2003): 1197-1202.

6.	 Abiteboul S., et al. “Foundations of Databases”. Addison-Wes-
ley, Reading, MA (1995).

7.	 Codd EF. “A relational model for large shared data banks”.
CACM 13.6 (1970): 377-387.

8.	 Chen PP. “The entity-relationship model: Toward a unified
view of data”. ACM Transactions on Database Systems 1.1
(1976): 9-36.

9.	 Thalheim B. “Fundamentals of Entity-Relationship Modeling”.
Springer-Verlag, Berlin (2000).

10.	 Mancas C. “A Deeper Insight into the Mathematical Data Mod-
el”. In: Proceedings 13th ISDBMS International Seminar on
DBMS (1990): 122-134.

11.	 Mancas C. “On knowledge representation using an Elementary
Mathematical Data Model”. In: Proceedings 1st IASTED Inter-
national Conference on Information and Knowledge Sharing
(2002): 206-211.

12.	 Mancas C. “On Modeling Closed E-R Diagrams Using an Ele-
mentary Mathematical Data Model”. In: Proceedings 6th ADBIS
Conference on Advances in DB and Inf. Syst (2002): 65-74.

13.	 Mancas C. “Mat Base Constraint Sets Coherence and Minimali-
ty Enforcement Algorithms”. In: Benczur, A., Thalheim, B., Hor-
vath, T. (eds.: Proceedings 22nd ADBIS Conference on Advances
in DB and Inf. Sys (2018): 263-277.

14.	 Mancas C. “Mat Base E-RD Cycles Associated Non-Relational
Constraints Discovery Assistance Algorithm”. In: Intelligent
Computing, Proc. Computing Conference, AISC Series 997.1
(2019): 390-409.

15.	 Berkus J. “Josh’s Rules (of Database Contracting)” (2007).

16.	 Mancas C and Dorobantu V. “On enforcing relational con-
straints in Mat Base”. London Journal of Research in Computer
Science and Technology 17.1 (2017): 39-45.

17.	 Kueker DW. “Mathematical Logic and Theoretical Computer
Science”. (In: Lecture Notes in Pure and Applied Mathematics
Series). CRC Press, Boca Raton, FL (1986).

18.	 Mancas C and Mocanu A. “Mat Base DFS Detecting and Classi-
fying E-RD Cycles Algorithm”. Journal of Computer Science Ap-
plications and Information Technology 2.4 (2017): 1-14.

19.	 Mancas C. “Algorithms for key discovery assistance”. In: Pro-
ceedings 15th International Conference on Perspectives in
Business Informatics Research (BIR 2016): LNBIP 261 (2016):
322-338.

Citation: Christian Mancas. “MatBase Metadata Catalog Management”. Acta Scientific Computer Sciences 2.4 (2020): 25-29.

https://dl.acm.org/doi/10.1145/362384.362685
https://dl.acm.org/doi/10.1145/362384.362685
https://dl.acm.org/doi/10.1145/320434.320440
https://dl.acm.org/doi/10.1145/320434.320440
https://dl.acm.org/doi/10.1145/320434.320440
https://symbiosisonlinepublishing.com/computer-science-technology/computerscience-information-technology23.php
https://symbiosisonlinepublishing.com/computer-science-technology/computerscience-information-technology23.php
https://symbiosisonlinepublishing.com/computer-science-technology/computerscience-information-technology23.php

	_GoBack
	_GoBack

