

The Effectiveness of Virtual Reality Software in Teaching Anatomy: Controversial Results

Miral Nagy F. Salama*

Department of Biomedical Science, College of Medicine, Gulf Medical University,
United Arab of Emirates

*Corresponding Author: Miral Nagy F. Salama, Department of Biomedical Science,
College of Medicine, Gulf Medical University, United Arab of Emirates.

Received: March 10, 2022

Published: March 11, 2022

© All rights are reserved by Miral Nagy F. Salama.

Several 3D visualization approaches for teaching anatomy are being created, in part because of the scarcity of cadavers, the expensive cost of acquiring and preserving them, and the ethical issues surrounding their use [1-3]. Despite the variety of available instructional approaches, many undergraduate and graduate students regard their anatomical knowledge inadequate [4,5]. Nevertheless, numerous students are interested in learning anatomy using 3D pictures [2,4]. A recent study proposed combining 2D and innovative 3D teaching approaches to attain the needed degree of anatomical knowledge [2].

The effectiveness of 3D virtual reality in teaching Anatomy is controversial. De Faria evaluated the interactive virtual reality (VR) lectures that were accessed via students' personal computers. As a result, the study team determined that the 3D method was more effective at teaching anatomical concepts because the 3D group of students got significantly higher exam scores than their peers who attended the conventional lectures that used 2D images [6]. Agbetoba attributed the effectiveness of virtual reality to its ability to allow the students to understand spatial orientations [7]. On the other hand, some studies investigated the effect of using 3D virtual reality on studying neuroanatomy [8] and musculoskeletal [9] systems on medical students. Both studies found that the 3D software had no significant advantage over the 2D illustrations since the traditional method group of students' mean test scores was nearly identical to that of the virtual reality group. Also, a similar conclusion was obtained by [10,11] after using "Virtual Human Dissector" software and Virtual pelvic anatomy simulator, respectively, in learning about abdominal and pelvic structures. In 2014, Hoyek, *et al.* compared the assessment scores after studying the anatomy of the trunk by two different groups of students; the test group used 3D virtual reality while the second group used 2D

drawings within PowerPoint presentations. The study results were unexpected since they observed that the 2D group performed better than the 3D group in knowledge and comprehension questions [12].

The controversial research results were explained by [13,14], who attributed that to the different body organ systems used in each study and the variation of difficulty of each organ system. For one thing, understanding the anatomy of medical neurosciences is more complex than learning the anatomy of the musculoskeletal system [15] since the nervous system is one of the most spatially complicated systems in the human body [8]. In addition, the shoulder joint is widely regarded as one of the most challenging joints for medical students to understand [16]. Another cause of difference between the research results is the inclusion of participants at a different stage of their education compared to participants in other studies. For example, some studies included first-year medical students as participants [10,17-19], whereas others included fifth-year medical students as participants [20]. Hence, the longer students study medicine, the more fundamental knowledge of anatomy they acquire, and subsequently, the research results seem better. These confounding factors mentioned before complicated the task of comparing outcomes among studies.

Bibliography

1. McLachlan JC. *et al.* "Teaching anatomy without cadavers". *Medical Education* 38.4 (2004): 418-424.
2. Bergman EM. *et al.* "Why don't they know enough about anatomy? A narrative review". *Medical Teacher* 33 (2011) :403-409.
3. Ghosh SK. "Cadaveric dissection as an educational tool for anatomical sciences in the 21st century". *Anatomical Sciences Education* 10 (2017): 286-299.

4. Fitzgerald JE. *et al.* "Are we teaching sufficient anatomy at medical school? The opinions of newly qualified doctors". *Clinical Anatomy* 21 (2008) :718-724.
5. Triepels CPR. *et al.* "Medical students' perspective on training in anatomy". *Annals of Anatomy* 217 (2018): 60-65.
6. De Faria JW. *et al.* "Virtual and stereoscopic anatomy: When virtual reality meets medical education". *Journal of Neurosurgery* 125 (2016): 1105-1111.
7. Agbetoba A. *et al.* "Educational utility of advanced three-dimensional virtual imaging in evaluating the anatomical configuration of the frontal recess". *International Forum of Allergy and Rhinology* 7 (2017): 143-148.
8. Brewer DN. *et al.* "Evaluation of neuroanatomical training using a 3D visual reality model". *Studies in Health Technology and Informatics* 173 (2012): 85-91.
9. Khot Z. *et al.* "The relative effectiveness of computer-based and traditional resources for education in anatomy". *Anatomical Sciences Education* 6 (2013): 211-215.
10. Donnelly L. *et al.* "Virtual human dissector as a learning tool for studying cross-sectional anatomy". *Medical Teacher* 31 (2009): 553-555.
11. Hassinger JP. *et al.* "Virtual pelvic anatomy simulator: A pilot study of usability and perceived effectiveness". *Journal of Surgical Research* 161 (2010): 23-27.
12. Hoyek N. *et al.* "Effectiveness of three-dimensional digital animation in teaching human anatomy in an authentic classroom context". *Anatomical Sciences Education* 7 (2014): 430-437.
13. Fernandez R. *et al.* "Spatial abilities of expert clinical anatomicists: Comparison of abilities between novices, intermediates, and experts in anatomy". *Anatomical Sciences Education* 4 (2011): 1-8.
14. Nguyen N. *et al.* "Computer visualizations: Factors that influence spatial anatomy comprehension". *Anatomical Sciences Education* 5 (2012): 98-108.
15. Allen LK. *et al.* "Evaluation of an online three-dimensional interactive resource for undergraduate neuroanatomy education". *Anatomical Sciences Education* 9 (2016): 431-439.
16. Battulga B. *et al.* "The effectiveness of an interactive 3-dimensional computer graphics model for medical education". *Interactive Journal of Medical Research* 1 (2012): e2.
17. Nicholson DT. *et al.* "Can virtual reality improve anatomy education? A randomized controlled study of a computer-generated three-dimensional anatomical ear model". *Medical Education* 40 (2006): 1081-1087.
18. Solyar A. *et al.* "Endoscopic sinus surgery simulator as a teaching tool for anatomy education". *The American Journal of Surgery* 196 (2008): 120-124.
19. Ng CL. *et al.* "An innovative 3-dimensional model of the epi-tympanum for teaching of middle ear anatomy". *Otolaryngology-Head and Neck Surgery* 153 (2015): 832-837.
20. Venail F. *et al.* "Enhancement of temporal bone anatomy learning with computer 3D rendered imaging software". *Medical Teacher* 32 (2010): e282-e288.

Assets from publication with us

- Prompt Acknowledgement after receiving the article
- Thorough Double blinded peer review
- Rapid Publication
- Issue of Publication Certificate
- High visibility of your Published work

Website: www.actascientific.com/

Submit Article: www.actascientific.com/submission.php

Email us: editor@actascientific.com

Contact us: +91 9182824667