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Abstract
We consider finite numbers N of interacting fermions and address the question of their order- disorder properties.. Two well known 

fermion-fermion interactions are employed: spin-flip and pairing. The second is responsible for superconductivity. In considering 
their order-disorder properties we look specially at their dependence on N. One finds that, for special N values, unsuspected features 
emerge.
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Introduction

This effort investigates special fermion features focused on the 
order–disorder opposition, that is specified via a special statistical 
quantity called the disequilibrium D. We consider SU2xSU2 fermion 
models and are interested, as stated, in their thermodynamic 
traits. More specifically, in addition to D, we concentrate attention 
upon the notion of the energy cost of changing the prevailing 
order-situation as the interactions’ coupling constants vary. We 
work in a a thermal quantum statistical scenario (Gibbs’ canonical 
ensemble).

The entropy concept is intimately connected to the notion of 
disorder. The problem is how to quantify order. We appeal to a 
special order quantifier called disequilibrium D (consult [1] and 
references therein). D is an Euclidean distance in probability 
space: that between the current probability distribution and the 
uniform one. Of course, the latter is considered to be the maximally 
“disordered” one. Consequently, the largest D value ought to 
correspond to the biggest possible degree of order.

We use two simple and exactly solvable fermion models that 
are known to permit interesting insight into the intricacies of 

the quantum many-fermion problem, avoiding dealing with 
huge Hamiltonian matrices [2-4]. It was extraordinarily helpful 
in fermions theoretical research to employ the exactly solvable 
Lipkin Model (LM) [2-7]. This shed light on manifold traits of the 
many-body problem [8]. The two-energy-level LM (containing 
N fermions) is based on an SU2 algebra generated by operators 
denominated quasi-spin ones. The models of this paper are Lipkin 
model variants that possess exact analytical solutions (note that 
the LM model requires numerical diagonalization).

The angular momentum Casimir operator (CO) J2 permeates 
both the LM [5] and its present variants. N fermions are allocated 
to two N degenerated singe-particle levels. Our CO possesses 
different multiplets. There exists an unperturbed ground state 
multiplet of great importance [5]. Let us insist in that each of our 
two energy levels is degenerate and capable by itself to hold all our 
2Ω = N fermions. Thus, each level has N loci or sites, specified by 
a quasi spin index p. A site can be either occupied or empty. We 
denominate sister sites those loci with the same p value (p runs 
from unity to 2Ω, of course).
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Cambiaggio and Plastino (CP) [1,9] proposed years ago an 
SU2XSU2 Lipkin extension that permits treating the excited Lipkin 
multiplets, which was not possible before. This extension allowed 
one to formulate in quasi-spin language a kind of BCS formalism 
that mimics nuclear superconductivity [10-12], yielding exact 
analytic results. In such CP-model, the BCS solution is identical 
to the exact solution. The CP formalism entails a variable particle 
number.

We will proceed on this basis, as specified below.

Present program of activities

•	 To determine the form of a statistical indicator of order, the 
disequilibrium D.

•	 To determine how D depends on the number of fermions N.

•	 To determine how much free energy F one needs to modify 
D. The D changes we are interested in ensue as a result of 
variations in the coupling constants of the fermion-fermion 
interactions.

•	 The accompanying free energy costs of the D change are 
specified via a new statistical quantifier ν (order variation 
cost).

•	 We deal with two different interaction terms in the Hamiltonian 
H. They possess coupling constants V and G, respectively. Thus, 
we have two different kinds of ν, called νV and νG. They reflect 
the cost of changing either of the two coupling constants.

•	 We study the behavior of D, νV, and νG as a function of the 
number of fermions N and obtain interesting results.

Present fermions-system

Our SU2xSU2 Hamiltonian used in this effort has three 
components. 1) An unperturbed Hamiltonian H0 proportional to 
the z-compoenet of the angular momentum Jz plus two distinct 
interactions: 2) a pairing one HCP (with a dimensionless coupling 
constant G) [1] and 3) a spin–flip one [3] (with a dimensionless 
coupling constant V), so that the Hamiltonian reads

Our thermal elaborations are performed in Gibbs’ canonical 
ensemble at the inverse temperature β αT−1. One detects two T 
= 0 attractors (one for HCP and the other for HM) [13,14]. For the 
M attractor, each sister pair of sites is singly occupied. In the CP 

attractor, each sister pair is either doubly occupied or empty. People 
regard such a situation as an “ordered” one and, on the other hand, 
consider “disordered” those cases in which the two energy levels 
have different occupation numbers.

The LMC scheme

For our purposes, as anticipated in the Introduction, the 
protagonist is the disequilibrium D [15-18]. We know that D is 
associated with a uniform PD (Punif). D measures the Euclidean 
distance from the probability distribution (PD) of interest to Punif 

[15,16]. A hierarchy is established by the numerical values that D 
assumes, which reflects the existence of ”privileged” states among 
the accessible ones to our system [15,16]. If we multiply D by 
the entropy S one obtains a new quantifier called the statistical 
complexity C [15].

It is popular today to assert that C grasps the system’s structural 
traits in the same manner that entropy does with randomness [15]. 
For a case in which one has M accessible single particle states D is 
expressed as [15,16].

Where {p1, p2, . . . , pM } are the normalized probabilities (
 pi = 1) [15]. D gets its maximum possible value for a 

perfectly ordered state and, of course, vanishes for Punif. By the way, 
remember that

The trio S, D, and C constitutes the so-called LMC-scheme. It has 
received great attention, with a lot of applications [15-18].

Quasi spin formalism

As we have mentioned before, we will consider a spin–flip 
interaction [3,14] and a pairing one [1]. The second interaction 
mimics nuclear superconductivity [10]. Our dealings have an 
SU2XSU2 substratum that presupposes N fermions apportioned to 
2 Ω-fold degenerate single-particle (sp) levels (N = 2 Ω). Our two 
energy levels are separated by a an energy gap ϵ = 1 (arbitrary 
units). The system’s sp states are characterized by two quantum 
numbers: p, µ, with p = 1, . . . , 2Ω, and µ = ±1. p denotes both a 
quasi-spin quantum number and also a “site” or locus [5]. The 
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scheme necessitates SU2 quasi-spin operators Ji [5] cast in terms of 
creation and annihilation operators C+, C in the fashion.

We need also angular momentum-like pairing SU2 operators 
[9]:

Where Q+ creates and Q− destroys a pair of fermions, that 
together yield a null contribution to the Jz value. They are said to be 
paired to Jz = 0. Any J-operator commutes with all Q operators, and 
vice versa (SU2 × SU2). The pertinent Hilbert orthonormal basis is 
of the form of |J2, Jz, Q2, Q0 >. A fundamental relation is [9].

J + Q = Ω.

We set 2J = N [5]. The unperturbed ground state possesses J = Ω, 
Jz = -Ω, and Q = Q0 = 0 [9]. The spin flip Hamiltonian is

(Coupling constant V). If Jz|J, M ⟩ = M |J, M⟩, then J2|J, Jz⟩ = J(J + 
1)|J, Jz⟩:

Where the eigenvalues of Jz are named M. The HP M -eigenvalues 
read [14]

The energy of the unperturbed (V = 0) gs (ugs) (Q = Q0 = 0) is

E0 = −Ω. (14)

The all important feature of HP M is that, as V increases, the 
system undergoes Ω level crossings. Indeed, the ground state (at 
T = 0) stops being characterized by Jz = −J at V = Vcrit = (N −1)−1. As 
the coupling constant grows it comes to be linked with increasingly 
larger Jz values until we arrive at M = 0 for V = 1 [14]. The state |J, M 
= 0⟩ is an “attractor” for the system as V is grows (at T = 0).

Let us pass now to the pairing interaction G/2 Q+Q− that 
originates superconductivity,

Adding to Jz the pairing contribution Ep

H0 + HCP exhibits also a phase transition at G = Gcrit = (Ω − 1)−1 
[9]. There the system becomes a superconductor [9]. HCP, for 
large enough G, exhibits a second T = 0 “attractor” state. This 
superconducting state is associated with M = 0 with half of the p 
sites being doubly occupied.

Statistical mechanics treatment of our two interactions

For this we require the math results provided by [19]. Note that, 
while for the ground state at T = 0 we just use the J + Q = Ω multiplet 
or band, when T = 0 states belonging to other bands play a role. The 
degeneracy Y (J, Q) is, if β = 1/T,

We start with a partial partition function ZM that runs only over 
M reads [19]

Instead, the total partition function Z is

J and Q run over values allowed by the SU2 × SU2 symmetry 
[19]. One has

We also need a slight change in (22). Now [19],

0 ≤ J + Q = s ≤ Ω. 

We sum over J + Q = R and then over J, with Q fixed at Q = R − J. 
Then we have [19]
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One has R = 0, 1, 2, 3, . . . , Ω while J = 0, 1, 2, , R and

Remember that N = 2Ω [5]. Finally, one has

And

Order energy cost (OEC) ν

The OEC quantifies the energy needed to change D and we want 
ν(N). We have here two dimensionless coupling constants VX1 and 
GX2. A change from X to X + dX originates a variation in D after 
performing some amount of work W on the system. In the wake of 
[20], we define

Where dW is the work performed on the system as a result of 
the dX change. This work is given in terms of the free energy F = E 
- TS. Now ν(X; dX) is the diminution (increase) in D emerging from 
each unit of work performed on the system. If dF is negative, it is 
the system itself that does the work. We always think of quasi-static 
processes.

Our X(N) and also D(N) are determined by alternatively fixing

V (and setting G = 0)

G (and setting V = 0),

And we have

In more detail,

To repeat: the modifications in F can be connected to the work 
performed on the system dF = dW [20]. If νV (alternatively νG) 
diminishes, it requires energy for this to take place.

Figure 1: Plot of D versus N for β = 0.5. The red line is the spin 
flip disequilibrium D, while the blue one corresponds to the 

pairing interaction (originating superconductivity) D. The main 
result is that the system becomes the more ordered the larger N 
(disordered for few fermions). The pairing interaction creates 

more order than the spin flip one. Note that artifacts are 
observed only for N smaller than 50. We can mention than 

heavy nuclei tend to be superconductors. Our results seem to 
agree with this empiric fact.

Results

Remind that S, F, D, ν, etc., all depend on both V and G. At finite 
temperature, a change dX in X emerging from, say dG in G, will be 
also linked to the actual V value: dX = dX(G, V).

There exists a statistical correlation V − G in

An artifact of finite temperatures. Such an interconnection 
will influence the costs we are interested in here. Our results are 
displayed in figure 1 (D versus N) and 2 (ν versus N).

We see that order grows as N increases for the two interactions. 
This is an unsuspected property of interaction fermions. The 
interaction acts in a fashion that ”orders” the fermions-system 
as N grows. If N is large enough, this order ”saturates” and stops 
increasing. It takes free energy expenditure to change the coupling 
constants. But this expenditure diminishes as N grows and tends 
to vanish. Things happen as if the augmenting of N would tend by 
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itself to tightly bind the fermions, an unsuspected trait. We point 
out that our two present fermion. Fermion interactions do occur 
in Nature.

Figure 2: Plot of the energy costs ν versus N for β = 0.5. Red 
line spin flip one and black line pairing interaction. Both are 

negative. The system must perform work to change D. This work 
tends to vanish as N grows. Note that artifacts are observed only 

for N smaller than 50. It seems natural that once 
superconductivity is achieved, it takes no work to change the 

degree of order by increasing N.

Conclusions

In the present work we studied how high the degree of order of 
a system of fermions becomes when the particles interact either 
via a spin flip or via a pairing interaction at a finite temperature. 
We were particularly interested in the behavior-changes when the 
number of fermions N changes. Our analysis was carried out for 
exactly solvable models endowed with a Lie structure.

First, we constructed a statistical indicator of order called the 
disequilibrium D.

We ascertained the behavior of D versus N. We saw that, for both 
interactions, order grows as the number of fermions augments, an 
unexpected result.

Also, one ascertained how much free energy F is required to 
modify D by varying the coupling constants of the interactions. This 

results in two quantifiers νG and νV. We study their behavior as a 
function of N.

Both νs are negative. They tend to vanish as N grows, another 
unsuspected result. Once the number of fermions is large enough, 
it takes no free energy cost to increase N.
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