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Abstract
We develop a statistical physics’ picture of classical Newtonian gravitation and uncover rather notable en- tropic features. In 

particular, applying the classical canonical ensemble treatment of Newtonian gravitation (NG) generates unsuspected statistical 
constraints on important physical quantities entering the thermo- dynamics of gravitation. Some of these quantities are, for instance, 
the masses involved. We work in Gibbs’ canonical ensemble. One must appeal for this to a generalization of the Dimensional Regulation 
approach of Bollini and Giambiagi. For a full explanation of this theory see Dimensional Regularization and Non-Renormalizable 
Quantum Field Theories. Cambridge Scholars Publishing (2021). ISSN: 1-5275–6395-2.
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Introduction

In this work we develop some aspects of the Newtonian theory 
of gravitation.

For this purpose, we resort to the physical and mathematical 
theories described in [1], which have already been used in several 
articles (see, for example [2-5]).

The entropy notion is associated to diverse ideas, in particular, 
ignorance or disorder. We will concentrate here on the first one. 
Our focus is classical Newton gravity’s workings when statistically 
investigated by appeal to Gibbs’ canonical ensemble techniques.

Entropy and ignorance

Entropy is lack of information, i.e., ignorance [6]. How does this 
ignorance manifests itself physically? In variegated ways, of course. 
Just to fix ideas, we concentrate our attention now in an emblematic 
example: the Harmonic Oscillator (HO). The basic physical quantity 
one has to know in dealing with an HO is its frequency ω.

Let us begin with the quantum statistics of the HO at the 
temperature T [7-9]. Let kB stand for Boltzmann’s constant, β for 
the inverse temperature T, and e± = exp [±βℏω]. Then we have for 
the entropy the expression.
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It diverges if ω = 0. Our ignorance is infinite. Consider now the 
classical HO [8]. We have that also diverges for ω = 0. We see then 
that if the critical quantity for the theory vanishes, the ignorance 
augments without bounds. This also happens in an interesting 
paper on coupled harmonic oscillators, recently published, if 
suitable constants of that paper called C1 = C2 = C3 vanish, as we are 
left only with kinetic energy [10].

Problem and goal

We will be concerned in this paper with classical Newtonian 
gravity. No relativistic consideration is needed. Just classical 
statistical mechanics is enough. The critical piece of knowledge 
is the gravitational constant G, or more properly, as we will soon 
realize, the quantity x = Gm1m2/kBT. The m’s are the interacting 
masses, T the temperature, and kB Boltzmann’s constant.

We ask now what happens with our gravity’s entropic ignorance 
when our critical piece of knowledge vanishes (x = 0)? The answer 
is much more complicated in this scenario than for the HO, as we 
discuss in the forthcoming Section. Our goal, in order to answer 
the question, is to adequately face and successfully deal with this 
complicated classical layout.

Accompanying mathematical troubles

As it is well known, appealing to conventional integration tools 
the classic gravitational thermodynamic functions turn out to be 
not finite [[11] (and references therein)]. This difficulty can be 
circumvented by using special, rather advanced mathematical 
techniques [11]. This involves using a combination of

•	 A generalization of the dimensional regularization [11] and

•	 The analytical extension of an associated ensuing integral 
made by Gradshtein and Rizik in their celebrated Table [12].

We begin with the handling of these items next.

Mathematical details

As stated above, here we must appeal to a rather not 
conventional mathematical apparatus for adequately analyzing the 
ensuing classical scenario.

Our classical scenario

We envision a classical canonical ensemble whose constituents 
are two gravitationally interacting masses m1 and m2 at the inverse 

temperature β = 1/kBT. It is usual to pass to a center-of-mass M and 
relative one m, separated by a distance r. The gravitation constant 
is G.

The classical concomitant partition function Z (in any number 
ν of spatial dimensions) diverges [11], and one has (x-p) as the 
phase-space coordinates in the special case of spatial dimension 
ν = 3.

Most people believe that Z diverges. However, such belief does 
not take into account the possibility of analytical extensions, that 
would take care of divergences, e.g., at the origin. A useful result 
obtained in [11] is the integral that is needed for the forthcoming 
developments.

Our classical 3D partition function Z = Z3

In tackling the Z integration process we employ hyper-spherical 
coordinates. One faces two integrals, each in 3 spatial dimensions. 
A change of variables is mandatory. We work with

                                              

                                          ·

Where 0 ≤ θj ≤ π, 1 ≤ j ≤ 3 − 2, and 0 ≤ θ3−1 ≤ 2π. Integrating over 
the angular variables (Ω3 = (θ1, θ2, θ3−1)) one finds

 

We face just two radial coordinates (one in r− space and the 
other in p− space) and 4 angles. Thus,

We appeal now to (4). Accordingly, from

Eq. (8) is telling us that, regretfully, poles have emerged above. 
The day is saved here by appeal to the so-called dimensional 
regularization (DR) approach, as explained in reference [11].
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Regularized gravitational partition function Z

Focus attention upon (8). The central idea of our procedure 
is simply explained. If we have a quantity F (ν) that diverges for 
special values of the dimension ν (here ν = 3), the DR generalized 
approach consists in performing the Laurent-expansion of F 
around ν = 3 and select after wards, as the physical result for F, the 
ν = 3-independent term in the ensuing expansion. The reasons for 
such a procedure are discussed in detail in [11].

Here, the pertinent Laurent expansion in the variable ν around 
ν = 3 is [[11] and references therein].

Where C is Euler’s constant. Zν diverges at ν = 3. By definition 
(this is the essential aspect of DR), the independent (ν 3)-term 
in the Zν-Laurent expansion will give the physical value of Zν, as 
explained in [2]. Accordingly,

Let ci stand for several constants (independent of either β or 
of GMm that appear above). By inspection then, we can write the 
partition function Z in the more useful form.

Or, setting

Which will be an important physical variable here on, we have 
for the partition function

So that the all important quantity given by the logarithm of Z, 
that is proportional to Helmholtz free energy

F, reads

First classical statistical task: avoiding imaginary entropic 
values

Now we have Helmholtz’ free energy F

And we construct the associated entropy S via

Reintroducing the constants’ proper values we finally have

We plot in figure 1 S(x) versus x. Note that the vertical axis S is 
NOT plotted from S = 0 but from S ∼ 5. S diverges at x 0.65. This is 
so because, at this x value, the denominator in the second term of 
the r. h. s. of (17) vanishes. Also, for x smaller than that very value, 
the logarithm in the first term there becomes imaginary (imaginary 
entropy!). Thus, necessarily x ∼ 0.65. The typical quantity of 
statistical gravity, x, cannot be zero, a significant peculiarity. Of 
course, such condition restricts, from a theoretical viewpoint, the 
possible values of m, M, G, and T. This is our most basic result here, 
i.e., thermal gravity restrictions on the possible values of important 
and typical physical quantities. Figure 2 illustrates the S versus G 
comportment.

Figure 1: Plot of S versus x. Notice the origin of S is not 
displayed. The minimum of S is NOT equal zero but is located at 

S ∼ 7.6. S diverges at x ∼ 0.65, as explained in the text.
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Figure 2: Plot of S versus G for m = 1, M = 100, β = 1. Note the 
divergence at the extreme left which indicates x = 0.65.

Emerging constrains of our 3D-classical entropy treatment

We started our proceedings looking for an answer to the 
question: What happens with the entropic ignorance when the 
critical quantity x of Newtons’ gravity vanishes? After obtaining 
Z and then S we realized that the entropy might be imaginary for 
certain x values. As stated above, to avoid this the argument of the 
logarithm in the first term of (17) above must be greater than zero. 
Otherwise, of course, S might have an imaginary component. Thus, 
we found the following important inequality (remember that C is 
Euler’s constant, ≃ 0.577).

That carries very important (and hopefully new) classical 
gravitational information.

Answer to our initial query

Our initial question was: what happens if x vanishes? The rather 
surprising response is that x can not vanish according to Eq. (18). 
The entropy (ignorance) diverges, but not at x = 0 but at x ∼ 0.65.

Further statistical constraints

Further, from (18) we obtain the additional restrictions on G 
and T

And

We plot next T versus G in figure 3, for M = 100 and m = 1.

Figure 3: T versus G. We draw the T - G curve at which the en-
tropy diverges according to Eq. (4.12). We set m = 1, 

M = 100. Note that the origin can not be reached on account of 
the inequality x <∼ 0.65.

Summarizing, we have obtained hopefully new statistical 
information regarding statistical constraints to Newton’s gravity 
workings:

• Neither G nor the masses can be arbitrarily small.

• T can not be arbitrarily large.

• If the masses grow, the lower bound for G diminishes.

• x is the basic statistical quantity for gravitation. Since the 
cosmic background radiation’s temperature evolves with 
time, so does x.

• S grows as T augments, as it should.

• S diverges as T → 0. This is a peculiar information theoretic 
effect of classical Newtonian gravity.

Conclusion

In this work, we have evaluated classical thermodynamic 
functions corresponding to Newton’s three-dimensional gravity. 
Since the integral that defines the partition function is divergent, 
we have used a generalization of the dimensional regularization 
approach of Bollini and Giambiagi. Some seemingly important new 
statistical information has been gathered.

It was suggested by Dirac in 1937 that G might vary with time 
[13]. Here we showed that the typical quantity of thermal statistical 
classical gravity is the one we called x above, that depends upon the 
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masses, G, and T. Since the Big Bang epoch, the cosmic background 
temperature has diminished, which entails that x has been allowed 
to grow with time. Thus, at least some gravitation-related quantity 
seems to depend on time.
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