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Abstract

The propagation of pulses of waves of current and voltage in long lines with nonlinearity and dispersion in the presence of 
low-frequency fluctuations of current and voltage, which can be caused by the influence of external EM fields generated by nearby 
electrical equipment of the industrial or energy object, is analytically investigated. It is shown that even neglecting losses, under the 
influence of low-frequency fluctuations external to the pulse, it is deformed, and, with propagation, the characteristic size of the pulse 
along the line and its amplitude change as 2/3t and 2/3−t , respectively. 
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Basic equations and statement of the problem

Propagation in long lines with distributed parameters of non-
linear pulses of current and voltage waves (CVW), excited by ex-
ternal sources of the electromagnetic (EM) field, was studied 
theoretically and numerically in [1,2]. At this, in [1], for inhomo-
geneous telegraph equations describing CVW in lines with a linear 
load, exact analytical solutions were obtained for such sources as a 
remote lightning discharge, which induces CVW due to the spread-
ing of charges, “pulled up” by the electrostatic field of a thunder-
storm cloud. For lines with a nonlinear load, the resulting set of 
inhomogeneous Korteweg-de Vries (KdV) equations was solved 
numerically using the methods of numerical integration of non-
linear systems developed in [2,3]. However, in both cases, it was 
assumed that low-frequency (in comparison with the characteris-
tic pulse length) oscillations of the current and voltage in the line 
were initially absent. In reality, almost always we meet in practice 
with a situation when signals propagating in lines (for example, in 
control networks) are influenced by external EM fields generated 

by nearby electrical equipment of an industrial or energy facility, 
the total effect of which onto the line has a pronounced chaotical 
character. As a result, such an effect can, in a fairly good approxima-
tion, be considered as stochastic fluctuations of the current (and, 
accordingly, voltage) induced in the line, the frequencies of which 
(on the order of the power frequency) are significantly lower than 
the characteristic frequencies of the CVW control pulses propagat-
ing through the network.

In this work, we study the problem of propagation of CVW puls-
es propagating in long lines that include nonlinear elements (for 
example, semiconductor (parametric) diodes, varistors or spark 
gaps as nonlinear capacitors, etc.) with a dispersion determined by 
the presence of inductive elements in the line, in presence of low-
frequency fluctuations of current and voltage. For a line whose ele-
ment is shown in figure 1, the equations describing the propagation 
of CVW have the form of the set of the KdV equations that take into 

account possible losses in the line [2]:
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Figure 1: Element of long line  with magnetic coupling.

Here R, C, L, G are distributed parameters: resistance, capaci-
tance, inductance and leakage coefficient (conductance), calculated 
per unit length; and 2 ,1 αα  and 2 ,1 ββ are parameters that deter-
mine the contribution of nonlinear and dispersion effects, respec-
tively. Following [3], we rewrite eqs. (1) in dimensionless form:

where coefficients 2,12,12,1
~,~,~ γβα  are also dimensionless, and for 

the analysis simplification let us first assume that the line losses 
are negligible: 0~

2,1 ≈γ , since their presence can “mask” the effects 
caused by the action of the stochastic current and voltage fluctua-
tions on propagation of the CVW pulse in the study (we will discuss 
the effect of losses in the final part of the paper). 

Consider one (any) of the equations obtained in this way and, 
omitting the “tildes” and indices at the coefficients, and also assum-
ing, for example, for the first equation of set (2) that at times much 
less than the characteristic period of fluctuations, the current and 
voltage are linearly related by the relation U = IR, we write:

For simplicity, we make change U → −(6/α)u and introduce into 
the equation a term describing stochastic fluctuations:

0)(6 3 =η−∂+∂−∂ tuuuu xxt . -------- (3)

Equation (3) is the so-called “stochastic” KdV equation, first 
studied (regardless of the type of medium) by M. Wadati [4]. It 
is known from [3,5] that this equation for η (t)=0 describes the 
evolution of nonlinear waves and solitons in a wide variety of dis-
persive media. For definiteness, we will investigate the effect of 
stochastic oscillations of the current and voltage in the line on the 
soliton of the KdV equation, since at η (t)=0 it is a stable formation 
and propagates without changing its shape and velocity, although 
the approach carried out below is quite general (for example, in 
Sec. 2, the problem is solved for waves of any type described by the 
equation in the general setting).

In eq. (3), η(t) describes the external “noise” when the char-
acteristic dimensions of the CVW soliton ls are much less than the 
coherent length of the noise ln. This is a particular case of a more 
general one, when the external noise is described by a term of 
the form η (x, t). However, being simpler for analytical study, the 
considered particular case allows us to obtain an exact result and 
gives us information that is very useful for a more general situation 
when ns ll >

< . 

General exact solution

First of all, note that Eq. (1) is related to the KdV equation

06 3 =∂+∂−∂ ξξ VVVVt

by the Galilean transformation

and, therefore, is a fully integrable system and can be integrated by 
the IST method [6]. Following the analysis performed in [4], we will 
assume that the external noise η(t) is Gaussian 

w
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and white )'(2)'()( tttt −δε=ηη . Here, angle brackets  de-
note statistical averaging, and symbols  as in [4], mean that we 
choose n/2 pairs (ti, tj), multiply n/2 times )()( ji tt ηη  and sum 
over all different (n-1)!! In this case for W(t) we have

Let us first consider the problem in its most general setting. Let 
the functional of V (t, ξ) has the following form:

Considering Fourier transform

with due account fluctuations of the coordinate ξ, we obtain [3]

( ) ( ) [ ])(exp,ˆ,ˆ 0 tmkiktFktF = , ----- (8)

where

Averaging statistically, we have

 ( ) ( ) )(ˆ,ˆ,ˆ 0 kGktFktF = , ---------- (10)

where for [ ])(exp)(ˆ tmkikG = , using (5) and (6), we can write

Equation (10) shows that the averaged spectrum (8) of the func-
tional [ ]),,( ytVF ξ  is the product ( )yktF ,,ˆ  in the absence of noise 
(9) and Gaussian distribution (11). Thus, we have

Using the convolution theorem, one can also obtain from solution 
(12) [4] 

 
where

The obtained expressions (12) and (13) can now be used to 
study the dynamic behavior of solitons of Eq. (3), which we will 
now consider.

Dynamics of the CVW solitons

As an example, let us investigate the case when [ ]),( ξtVF  (7) 
is the functional of the one-soliton solution of Eq. (3). Calculating 

( )ktF ,ˆ0  and )(ˆ kG  using formulas (9) and (11), one can easily find 

( )ktF ,ˆ  and then obtain ),( xtu . 

We will use, however, a more visual and simple method proposed 
in [4]. Consider the solution 

(ν is constant, which has the meaning of the eigenvalue correspond-
ing to the soliton − see [6]) and, taking into account the change 

)(tmx +=ξ  and formula (4), we write the solution in the form 

Further, taking the statistical average and using formulas (5), 
(6), we obtain:

Second and third relations (6) give [3]
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Thus, we have

where

Note that formula (15) was obtained under the assumption that 
the “noise” is Gaussian. For “noise” that is not white, the expression 
for the parameter b (16) will be more complicated. Following [3], 
we obtain from (15)

It follows from the first equality in (17) that the dynamic behavior 
of the soliton of the stochastic KdV equation is described by the diffu-
sion equation, where the role of time is played by the parameter b, and 
the role of the spatial coordinate is played by a. Note that eq. (15) can 
be written in the form of the Fourier transform, and then the solution 
of eq. (17) takes the form 

Formula (18) gives a spectral representation of the solution of 
the stochastic KdV equation in the presence of stochastic Gaussian 
fluctuations of the wave field, at this the Fourier transform of the 
statistical mean ),( xtu  is the product of the purely soliton part 

kk ππν− sinh/8 2  and the diffusion part . Using the con-
volution theorem, solution (18) can be rewritten in the following form 
[5]:

Based on the result (18), let us now consider the dynamic behavior 
of a soliton in the presence of a Gaussian “noise”. According to [5], from 
(18) one can obtain:

b) at b > 1

where nB  are the Bernoulli numbers. Expressions (19) show that at 
0=t  ),( xtu  is defined by the right-hand side of formula (14) with 
0=t , and at ∞→t

From the last expression it can be seen that during evolution 
as a result of the action of external “noise” the soliton is deformed, 
and, asymptotically, its characteristic size along the direction of 
propagation and the amplitude change, respectively, as 2/3t  and 

2/3−t , that is not a consequence of diffusion or dissipative effects 
that could associated with losses, since the region occupied by the 
soliton is invariant, i.e. the integral ∫

∞
∞− xxtu d),(  is conserved. 

This can be easily verified by calculation:

Conclusion
In conclusion, we note that we considered the influence on the 

structure and evolution of the soliton of the KdV equation, describing 
the CVW pulse, of the stochastic oscillations present in the system (in 
our case, in the line), in form of the external white “noise” η (t). In a 
more general case, the KdV equation can take the form [4]

(where fourth term – compare (20) with the eqs. (2) – describes the 
losses in the line), however, the analysis performed remains valid 
when the characteristic time γ<< /1st  and the characteristic size of 
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the soliton ns ll <<  ( nl  is the coherent “length” of the noise). In the 
case when ls ~ ln, the Galilean transformation (4) turns out to be incor-
rect and it is necessary to generalize the method of the inverse scat-
tering problem, as it was done, for example, for the KdV equation in 
[7,8]. To obtain exact (analytical) solutions of eq. (20) is not possible, 
and the only way to study the dynamics of its solutions is numerical 
integration, which can be successfully carried out using the methods 
developed in [2,3,5]. 
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