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Abstract

The formation, structure, stability and dynamics of the multidimensional solitons forming on the low-frequency branch of oscil-
lations in plasma for cases when β≡4πnT/B2<<1  and 1>β  are studied. In first case, for ω<ωB=eB/Mc,kλD<<1  the FMS waves are 
excited, and their dynamics under conditions 22

⊥>> kkx , Ax cv <<  near the cone of 2/1)/(arctan mM=θ , is described by the GKP 
equation for magnetic field BBh /~=  with due account of the high order dispersive correction defined by values of plasma param-
eters and angle ),( kB=θ . In another case, the dynamics of the finite-amplitude Alfvén waves propagating near-to-parallel to B is 
described by the 3-DNLS equation for |1|2/)( β−+= BiBBh zy . To study the stability of multidimensional solitons in both cases 
the method of investigation of the Hamiltonian bounding with deformation conserving momentum by solving the variation problem 
is used. To study evolution of solitons and their collision dynamics the proper equations are integrated numerically using the codes 
specially developed. As a result, it was obtained that in both cases for single solitons on a level with wave spreading and collapse the 
formation of multidimensional solitons may be observed. These results may be also interpreted in terms of self-focusing phenom-
enon for the FMS and Alfvén waves’ beam as stationary beam formation, scattering and self-focusing of beam. The soliton collisions 
on a level with known elastic interaction can lead to formation of complex structures including the multisoliton bound states. For all 
cases the problem of soliton dynamics including all stages of their evolution and collision dynamics is investigated in detail.
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Introduction

Basic equations

In this paper, following the technique developed in [1,2], we 
study the formation, structure, stability and dynamics of the mul-
tidimensional solitons forming on the low-frequency branch of os-
cillations in plasma. for cases β≡4πnT/B2<<1  and 1>β . These 
oscillations are described by the BK1 equation.

 ---------- (1)

Which with operator 

)(),(Â 32
xxxxuut ∂γ−∂β−ν∂−∂α=  ----------------(2)

Turns into the GKP equation class and in case when β ≡ 4πnT/B2 

<< 1  for ω<ωB=eB/Mc,kλD<<1  describes propagation of the fast 
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magnetosonic (FMS) waves in magnetized plasma with 22
⊥>> kkx

, Ax cv <<  near the cone of 2/1)/(arctan mM=θ [3]. In this 
case function u has a sense the dimensionless amplitude of the 
magnetic field of the wave, BBh /~= , the coefficients at the 
terms describing nonlinearity, dissipation and dispersion effects, 
respectively, are defined by values of plasma parameters and angle 

),( kB=θ . In opposite case, when operator 

)(||3),(Â 222 ν+λ∂−∂= iupsut xx ------------ (3)

Eq. (1) turns into the 3-dimensional derivative nonlinear 
Schrödinger (3-DNLS) equation class and in case when 1>β  de-
scribes the dynamics of the finite-amplitude Alfvén waves propa-
gating near-to-parallel to B for |1|2/)( β−+== Bzy iBBhu
, 0/ B⊥= Bh  where )1( iep += , and e is “an eccentricity” of the 
polarization ellipse of the Alfvén wave [4]. The upper and lower 
signs of 1±=λ  correspond to the right and left circularly polarized 
wave, respectively; sign of nonlinearity is accounted by coefficient 

)1(sgn ps −= = ±1 in nonlinear term; 2/Ar−=κ , iAA vr 0/ω= .

The sets of eqs. (1), (2) and (1), (3) are not completely inte-
grable ones, and the well-known IST is not applicable for their so-
lution. Therefore, in the analytical study of these sets we can use 
also the methods for investigation of stability and asymptotics of 
proper multidimensional solutions, and qualitative analysis of ap-
propriate dynamic systems. To study evolution of solitons and their 
collision dynamics the proper equations should be integrated nu-
merically using the special simulation codes. Let us consider these 
problems separately.

Stability of 2D and 3D solutions

In this paragraph we will consider the analytical approaches 
and the obtained with their help results of study of the problem 
of stability of the multidimensional solitons and nonlinear wave 
packets, which under the neglect of dissipative effects follow the 
GKP-class equations in form (1), (2) and the 3-DNLS equation in 
form (1), (3) with 0=ν . At first, for the whole diapason of the 
dispersion coefficients’ change we will give the estimations and 
formulate the sufficient conditions of stability of the GKP equation 
solutions in the 2D and 3D geometry on the basis of transforma-
tional properties of the Hamiltonian. Further, we will consider the 
same problem for the 3-DNLS equation in the 3D geometry.

GKP equation

To study the solutions stability, performing some coordinate 
transformation, rewrite eqs. (1), (2) in the Hamiltonian form

δ∂=∂ (xtu H )/ uδ  ------------ (4)

With Hamiltonian

 H ( ) ( ) ( )∫ 



 −∂∇+∂

λ
+∂

ε
−= ⊥ rduvuu xxx

32222
2
1

22  --------------- (5)

Where uvx =∂ 2 , γ=λγβ=ε − sgn,|| 2/1 . The stationary 
solutions of Eq. (4) are defined from the variation problem, δ (H 
+ vPx) = 0 where ∫= rduPx

2
2
1  is the momentum projection 

onto the x axis, v is a Lagrange’s factor, which illustrates the fact 
that all finite solutions of Eq. (4) are the stationary points of the 
Hamiltonian for fixed Px. 

Let us consider the problem of stability. In conformity with the 
Lyapunov’s theorem, in the dynamical system the stationary points 
which answer maximum or minimum of H  are absolutely stable. If 
the present extremum is local that the locally stable solutions are 
possible. The unstable states correspond to monotonous depen-
dence of H on its variables, i.e. to cases when the stationary point is 
a saddle point. In conformity with said above, it is needed to prove 
the Hamiltonian H boundedness (from below) for fixed Px.

Let us consider in real vector space R the scale transformations 

)/,/(),( 2/)1(2/1 ηζηζ→ ⊥
−−

⊥ rr xuxu d  (where d is the problem 
dimension, and ∈ηζ, R ) conserving the momentum projection Px. 
The Hamiltonian as a function of parameters ηζ,  assumes a form

H 42/)1(2/1222),( −−−−− ζ+ηζ−ηζ+ζ=ηζ ecba d  
----------- (6)

Where 

∫ ∫ ∫=∂∇=∂ε−= ⊥ ,,)()2/1(,)()2/( 322 rrr ducdvbdua xx

∫ ∂λ= rdue x
22 )()2/( .

The common solving of the equalities having sense of the nec-
essary conditions of the Hamiltonian extremum existence and the 
inequalities that have sense of the sufficient conditions of the H (lo-
cal) minimum existence enables us to obtain the following results.

In 2D case [d=2 in expression (6)] one can obtain that for 
0,1 ≤ε=λ  the Hamiltonian at fixed Px is bounded from below, 
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and, hence, the 2D solitons are absolutely stable in this case. In the 
cases 0,1 >ε=λ  and 0,1 <ε−=λ  the Hamiltonian H has a 
local minima, and Eq. (4) may have the locally stable solutions for 
some values of parameters (see [3] for details). All another cases 
correspond to unstable 2D solutions.

In 3D case the solution of appropriate set of equalities and in-
equalities enables to obtain that the absolutely stable 3D solutions 
take place at 0,1 >ε=λ , and the locally stable solutions may 
be observed at 0,1 ≤ε=λ  if condition on integral coefficients 

512/9/ 42 <ceab  is satisfied. 

This is a noteworthy fact that the GKP equation accounting, un-
like the usual KP equation, the next order dispersive correction has 
stable 3D solutions. The application of this analysis to the problem 
of the FMS waves beam’s propagation in magnetized plasma en-
ables us to prove [3], for example, that the 3D beam propagating at θ 
angle to magnetic field doesn’t focused and becomes stationary and 
stable in the cone of 2/1)/(arctan mM<θ  when inequality 

3/4)]cot1([cot)cot/( 12422 >θ+θθ− −Mm  is satis-
fied. Let us note also that obtained here results give us the pos-
sibility to interpret correctly some our numerical and theoretical 
results on the dynamics of the internal gravity waves’ solitons 
induced by the pulse-type sources which propagate at heights of 
the ionosphere F region [5] from the point of view of such solitons 
stability.

DNLS equation

Let us rewrite the 3-DNLS equation in form (4) performing for-
mal change hu →  with the Hamiltonian [6]

 ( ) )(arg,, = 22
2
1*4

2
1 hhwdwshhh xxx =ϕ=∂



 ∂∇κ+ϕ∂λ+∫

∞
∞− ⊥ rH

 
-------- (7)

And, by analogy with above (see also [7]), will investi-
gate the boundedness of H under its deformations conserving 

∫= rdhPx
2

2
1 || , when variation equation considered above 

takes place. Considering in complex vector space С the scale trans-
formations )/,/(),( 12/1 ηζηζ→ ⊥

−−
⊥ rr xhxh  ( ∈ηζ,

С) conserving Px. The Hamiltonian as a function of parameters 
ηζ,  takes form

H 22121),( −−−− ηζ+ζ+ηζ=ηζ cba  ----------- (8)

Where 

∫ ∫ ∫ ∂∇σ=ϕ∂λ== ⊥ rrr dwcdhhsbdha xx
2*4 )()2/(,,||)2/1( . 

Solving, by analogy with the GKP equation, the extremum prob-
lem for functional (8) one can obtain that the Hamiltonian (7) is 
bounded from below, 

0),21(/3 2 <+−> bddbH , -------------(9)

If condition ( ) 1851322
11 +=<
−− dca  is carried out, and 

in this case the 3D solutions of the 3-DNLS equation are stable, and 
they are unstable in opposite case, 0,1 <≥− bdca . Condition 

0<b  corresponds to the right circularly polarized wave propa-
gating in plasma with p=4πnT/B2>1, i.e. when 1,1 −==λ s  
in the eqs. (1), (3), and to the left circularly polarized wave 
when ,1−=λ  1=s . But it is necessary to note that the sign 
change ,11 −→=λ  11→−=s  is equivalent to change 

κ−→κ−→ ,tt  and for negative κ the Hamiltonian becomes 
negative in the area “occupied” by the 3D wave weakly limited in the 

⊥k -direction, in this case condition (9) is not satisfied. Change of 
sign of b to positive [when 1,1 ==λ s  or 1,1 −=−=λ s  in 
eqs. (1), (3)] is equivalent to analytical extension of solution from 
real y, z to pure imaginary values: izziyy −→−→ ,  and, 
therefore, equivalent to change of sign of κ in basic equations. In 
this case instead of inequality (9) the opposite inequality will take 
place. From the physical point of view, it means that if this opposite 
inequality is satisfied, the right polarized waves with positive non-
linearity and the left polarized waves with negative nonlinearity 
will be stable. Note, that in particular case when 0=κ  in eqs. (1), 
(3) (1D approximation), with using of accepted approach, instead 
of inequality (9) and opposite one, it is easy to obtain the condi-
tions 0 >H  and 0< H , respectively, that is completely in an agree-
ment with the results obtained in [8] for the 1-DNLS equation.

So, the analysis of the transformation properties of the Hamil-
tonian of the 3-DNLS equation enable us the ranges of values of the 
coefficients and H (that has a sense of energy) corresponding with 
the stable and unstable 3D solutions.

Structure and dynamics of 2D and 3D solutions

The structure, evolution and the interaction dynamics of multi-
dimensional solitons were studied numerically using the numeri-
cal codes especially developed for the classes of eqs. (1), (2) and 
(1), (3) [3,9-12]. Let us now consider the results of numerical simu-
lation for the GKP and 3-DNLS equations separately.
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GKP equation

In 3D case we established three stages of evolution of forming 
soliton-like structures [12]. In first stage the self-focusing type 
instability is developed (Figure 3), and the pulse “wings” fall be-
hind its center and the amplitude increases sharply. Then, in the 
instability saturation stage, the equation term being proportional 
to the fifth derivative begins to play a dominant role owing to de-
creasing of the pulse characteristic dimensions. In the next stage 
the defocusing of wave field is observed. At this, for 0≤ε  it leads 
to the pulse spreading, and for 0>ε  the evolution ends with the 
3D soliton structure formation (Figure 3). For 1−=λ  with any 
values of ε the solutions are the 3D wave packets which spread in 
due course. These results are confirmed by analysis of H bounding 
with its deformation on numerical solutions. So, unlike the 3D KP 
equation, there are not the collapsing solutions for the FMS waves 
propagating near the cone of 2/1)/(arctan mM<θ  but the 
stable 3D solutions may be observed. Let us note that more detail 
results on structure classification of 2D and 3D solutions may be 
found in [13], and the applications to the FMS waves including the 
FMS wave beam dynamics are discussed in detail in [3,13].

Figure 1: General view of 2D soliton of eqs. (1), (2) with at ν=0: 
(a) λ=1, ε=-0.6 (t=0.2); (b) λ=1, ε=3.16 (t=0.5).

Let us first consider the results for 2D case when 0=∂z  in 
Eq. (1). Initial conditions have been taken in form of exact 2D soli-
ton solution of usual 2D KP equation [11]. The results obtained are 
the following. For 1=λ , 0≤ε  we observed formation of stable 
lump solutions with asymptotics which is very close to that of alge-
braic KP soliton (figure 1, a). In case 0>ε  the formation of soli-
tons oscillating in the direction of propagation and monotonic in 
transverse direction was observed (figure 1,b), their asymptotics 
were investigated in [13] in detail.

For 1−=λ  and 0≥ε , and small 0<ε  the evolution of ini-
tial condition leads to spreading of wave packet which is formed 
at first stage. At big 0<ε , however, we observed the formation 
of stable soliton solution with oscillating asymptotics, that corre-
sponds to above mentioned analytical results. It is interesting that 
the 2D soliton interaction dynamics is not trivial for the GKP equa-
tion unlike usual KP equation [11,13]. So, for example, for 1=λ
, 0>ε  the formation of stable two-soliton structure (so-called 
“bisoliton”) may be observed as a final result of interaction of two 
initial pulses (Figure 2). Let us note that for all cases the analysis of 
the H deformations on numerical solutions confirmed the stability 
of solutions considered above.

Figure 2: 2D bisoliton solution formed from initial pulses with 
u1(0)=1.35, u2(0)=1.3, △x(0)=6 for λ=1, ε=1.9, ν=0 (t=1.3).

Figure 3: Changing with time of the solution parameters, momen-
tum and H of the system for  λ= 1 (solid lines - ε=-0.45, dashed 

lines - ε =1.34): (1) umax ; (2) lx; (3) lx ; (4) P; (5) H.
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DNLS equation

For simulation the initial conditions have been chosen in two 
different forms: soliton-like solution, and modulated “plane” wave 
(see [4,10]). The results for different signs of integral parameter b 
and different initial values of H which were given by initial ampli-
tudes of wave and its characteristic lengths along the axes are fol-
lowing. For 1=λ  and 1−=s  with big 0>κ , ands initial pulse 
weakly bounded in the transverse direction (when Ineq. (9) is 
satisfied) we observed the formation of stable 3D soliton-like solu-
tion (Figure 4). For opposite signs of λ and s [that is equivalent to 
change κ−→κ−→ ,tt  in Eq. (1)] the Hamiltonian becomes 
negative, and the 3D wave is spread. For 1=λ  and 1−=s  with 
small 0>κ , and initial pulse rather strong bounded in the trans-
verse direction, we have observed formation of the 3D collapsing 
solutions. This effect is typical for all nonlinear systems where 
there are both non-limitation of H for fixed “junior” integrals and 
positive-defined quadratic terms in (7). The series of numerical ex-
periments for 0>b  when 1=λ , 1=s  and 1−=λ , 1−=s  
in the 3-DNLS equation showed that the initial 3D pulse is unstable 
and spreads with time. These results are well confirmed by the 
analysis of H bounding on the numerical solutions.

in 3D case for the FMS wave beam having the close angular distri-
bution the stationary propagation may be observed as a result of 
nonlinear beam stabilization. In case of Alfvén waves propagating 
along magnetic field we have obtained that the 3D stable solutions 
may be observed on a level with 3D spreading and collapsing ones. 
These results may be also interpreted in terms of self-focusing 
phenomenon for the Alfvén waves’ beam as stationary beam for-
mation, scattering and self-focusing of beam. Let us note that we 
observed the dynamics of the Alfvén waves’ beam propagating in 
plasma with 1>β  to magnetic field at angles near 0° looking like 
the dynamics of the FMS wave beam propagating in plasma with 

1<<β  to magnetic field at angles near 2/π .
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Figure 4: Evolution of a 3D right circularly polarized nonlinear 
pulse for λ=1, s=-1, κ =1; H>-3bd/(1+2d2)>0.

Conclusion

In conclusion, we have considered two types of the low-fre-
quency oscillations in plasma with 1<<β  and 1>β  which cor-
respond to two types of waves and can lead to the formation of 
the multidimensional solitary wave structures. As a result, we have 
obtained that for the FMS waves on a level with sound scattering 
the 2D and 3D soliton formation may be observed. In particular, 
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