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Abstract
Graphene with a carbon-based structure can be considered as one of the most biocompatible nanomaterials synthesized in the 

laboratories. In this regard, green synthesis of graphene by herb and their extracts/ingredients has been drawn many attentions. 
Furthermore, potential applications of herbal-functionalized graphene nanomaterials in upcoming nanomedicine is known as one 
of the hot topics in recent years. Here, we have briefly reviewed green synthesis of graphene by some traditional east herbs and the 
unique features of herbal-functionalized graphene in some important biomedical/biological fields including anti-pathogen, cancer 
therapy, and tissue engineering purposes. 
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Introduction

Graphene is known as one of the unique two-dimensional 
nanomaterials with fascinating physicochemical properties 
highlighted in nanomedicine [1]. Interestingly, it is constructed by 
carbon atoms which are the basic elements of life in the Universe. 
Hence, graphene has been extensively applied in various biological 
as well as biomedical applications including, antibacterial [2], 
antifungal [3], antiparasitical [4] antiviral [5] purposes, various 
tissue engineering from cartilage [6] to vascular [7], bone [8], 
cardiac [9] and neuronal [10] tissue regenerations, drug/gene 
delivery [11], cancer detection/imaging [12], targeting [13] and 
therapy [14], DNA/RNA extraction [15], genetic biosensing [16] 
applicable in early detection of harmful gene expressions in blood 
[17], treatment of various diseases from viral-induced diseases 
[18] to Parkinson/Alzheimer [19] and recently fabrication of 
antiviral drugs [20] and vaccine [21]. In this work, we have 
reviewed green reduction of graphene oxide by some traditional 
east herbs and some special applications of herbal-functionalized 
graphene in upcoming biomedicine.

Green reduction of graphene oxide by traditional east herbs 

Ingredients and/or extracts of various traditional east herbs 
(originated from China and India to Persian) have been widely 
utilized for green synthesis and green functionalization of graphene 
materials applicable in various biological/biomedical purposes. 
For instance, Polyphenols of green tea [22], Aloe vera [23], Spinacia 
oleracea [24], Allicin of garlic [25], Ocimum sanctum [26], Curcumin 
[27], Inulin [28], Lycium barbarum [29], Chrysanthemum [30], 
Hibiscus sabdariffa L. [31], Salvadora persica L. [32], Clove essential 
oil [33], and Rose water [34] have been used for green reduction/
deoxygenation of graphene oxide.

Herbal-functionalized graphene in biomedicine

The green reduced graphene oxide sheets functionalized by 
herbal molecules/ingredients/drugs have been used in versatile 
biological/biomedical applications. For example, ginseng-reduced 
graphene oxide sheets were utilized as a two-dimensional scaffolds 
in proliferation/differentiation of human neural stem cells 
into neurons [35]. The reduced graphene oxide synthesized by 
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Chenopodium album [36] and Lantana camara [37] was suggested 
as effective biomediated nanomaterials for antimicrobial and 
anticancer purposes. Allicin-loaded graphene was used in 
antibacterial purposes [38]. Chang., et al. [39] reported the effect 
of reduced graphene oxide/Amaranth extract/Au nanocomposite 
hydrogel for localized and multiple synergistic cancer therapy. 
Curcumin-reduced graphene oxide was also applied in cancer 
cell destruction [40]. Green tea polyphenols-reduced graphene 
oxide sheets showed high attachment to cancerous cells [41], as 
similarly observed for glucose-reduced graphene oxide sheets [42]. 
In another work, Lentinan-modified graphene oxide sheets could 
facilitate antigen uptake in macrophages and improved/modulated 
the performance of antigens involved in adaptive immunity [43]. 
Laminaran of brown algae (with antioxidant and anti-infalammotry 
activities) was incorporated with three-dimensional graphene 
foam and the coposision was used as a three-dimensional scaffold 
to increase the toughness of the scaffold and modelate the behavior 
of starting stem cells [44]. Konjac glucomannan/sodium alginate/
GO hydrogels (in which konjac glucomannan was extracted 
from Amorphophallus konjac) was prepared and utilized as an 
anticancer drug with pH-dependent release of anticancer drug 
[45]. The β-carotene of Abelmoschus esculentus L. was incorporated 
by graphene oxide for further regulation of Nrf2 in order to trigger 
protection against diethylnitrosamine-induced hepatic fibrosis 
[46].

Conclusion

These data indicate that graphene, as one of the most 
biocompatible and/or low-risk nanomaterials in the world (due 
to its carbon-based structure), can present high potentials for 
developing the current nanomedicine, especially in the frame of 
traditional herbal medicine having low side-effects on human body 
and living environment. This strategy is not against the modern 
medicine for the required cases and so can help it for further 
completion and effectiveness of the preventions/treatments.
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