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Abstract
Captive population can suffer from inbreeding due to founder’s effect and supplementation from the wild has been considered to 

increase genetic diversity and reduce inbreeding. However, a recent simulation study suggests that one-off naïve supplementation 
from the wild cannot increase genetic diversity; thereby, suggesting more complicated supplementation regimes. Hence, we hypoth-
esize that that repeated supplementations can better increase genetic diversity compared to single supplementation. Our simula-
tions show that repeated 10% supplementations results in significantly higher genetic diversity (p-value ≤ 1.48E-03) compared 
to one-off 10% supplementation, and increasing the supplementation ratio of repeated supplementations results in higher genetic 
diversity (p-value ≤ 2.35E-04) compared to repeated 10% supplementations. However, increasing repeated supplementation ratios 
above 100% may not further increase genetic diversity. This implies that repeated supplementations have the potential to reduce but 
not eliminate inbreeding.
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Introduction

Inbreeding is the result of successful mating between two or-
ganisms which are closely related to each other, such as consan-
guineous unions between parents, siblings and first and second 
cousins [1]. It has been used as a breeding strategy used by breed-
ers for the aim of enhanced performance [2] and is useful in genet-
ics research as inbred populations tend to express recessive traits 
and diseases [3]. Artificial breeding is known to result in inbreed-
ing [4]. Another causes of inbreeding are population bottleneck or 
founder’s effect, which are common in captive populations, where 
there is reduced diversity due to the lack of mating options for the 
organisms [5,6]. Inbreeding can result in reduced genetic fitness 
and performance of off-springs, leading to increased risk of extinc-
tion [7-10].

Supplementing captive population from the wild [11,12] to in-
crease genetic diversity, leading to lowered inbreeding, have been 
suggested; even though inbreeding is also possible in wild popula-
tions [1,13,14]. A recent simulation study by Johny., et al. [15] sug-
gests that one-off naïve supplementation is unlikely to be able to 
increase genetic diversity; thereby, suggesting more complicated 
supplementation regimes. In this study, we extend the work of 
Johny., et al. [15] by examining the effects of genetic diversity from 
repeated simple supplementations from the wild into captive pop-
ulation using computer simulations, which are commonly used in 
the study of inbreeding [16-18] and evolution [19-22]. We hypoth-
esize that repeated supplementations can better increase genetic 
diversity compared to single supplementation as previously stud-
ied [15]. Our results that repeated supplementations with supple-
mentation ratios of up to 100% may increase genetic diversity in 
captive population.
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Methods
The simulation setup was based on Johny., et al. [15] using Is-

land [23], which had been used in a previous studies [14,15]. A 
population of one million organisms, representing wild popula-
tion, was generated with 50 genetic markers where each marker 
had 10 alleles of equal proportion. Five replicates of 500 organ-
isms each, representing five captive populations, were randomly 
selected from wild population, and simulated for 30 generations 
with captive population size kept constant throughout the simula-
tion. In the first set of simulation (one-off versus multiple supple-
mentation), 50 organisms (10% supplementation) were randomly 
selected from the wild and supplemented at (a) generation 5; (b) 
generations 5, and 10; (c) generations 5, 10, and 15; and (d) gen-
erations 5, 10, 15, and 20. In the second set of simulation (different 
supplementation ratios), a sample equivalent to 33%, 55%, 77%, 
or 100% of the captive sample size were randomly selected from 
the wild and supplemented to each captive population at genera-
tions 5, 10, 15, and 20. In the third set of simulation (supplemen-
tation to absurdity), a sample equivalent to 300%, 500%, 700%, 
or 900% of the captive sample size were randomly selected from 
the wild and supplemented to each captive population at genera-
tions 5, 10, 15, and 20. Chi-square statistic was calculated for each 
generation using the uniform allelic frequency as expected while 
the allelic frequencies in the population for each generation were 
used as observed values [24-26]. To compare results from differ-
ent simulations, normalized Chi-square value was calculated from 
Chi-square statistic as a quotient of Chi-square statistic and the 
degrees of freedom. 

Results and Discussion
Johny., et al. [15] suggests that one-off naïve supplementation 

at generation 5 is unlikely to be able to increase genetic diversity; 
thereby, suggesting more complicated supplementation regimes. 
In this study, we replicate Johny., et al. [15]’s supplementation at 
generation 5; and repeated the supplementation at generations 10, 
15, and 20 (Figure 1). Our results show that there are no significant 
differences between no supplementation and single supplementa-
tion in generation 5 at generation 20 (p-value = 0.391) or 30 (p-
value = 0.182). However, there are significant differences between 
no supplementation and (a) repeated supplementations in gen-

erations 5, and 10 at generation 20 (p-value = 1.48E-03) or 30 (p-
value = 3.17E-04); (b) repeated supplementations in generations 
5, 10, and 15 at generation 20 (p-value = 2.76E-04) or 30 (p-value 
= 3.68E-04); and (c) repeated supplementations in generations 5, 
10, 15, and 20 at generation 20 (p-value = 6.97E-05) or 30 (p-value 
= 1.13E-05). More importantly, repeated supplementations in gen-
erations 5, 10, and 15, is significantly different (p-value = 2.94E-04) 
to repeated supplementations in generations 5, 10, 15, and 20 at 
generation 30. This suggests that the number of supplementations 
is proportional to genetic diversity. Hence, repeated supplemen-
tations are likely more effective than one-off supplementation as 
constant introduction of new alleles into the captive population can 
improves the fitness of the population [27,28].

Since multiple 10% supplementations are likely to increase ge-
netic diversity (Figure 1), it is plausible that repeated supplementa-
tions at higher supplementation ratios can increase genetic diver-
sity more than multiple 10% supplementations. Hence, 33%, 55%, 
77%, or 100% supplementation ratios were simulated. Our results 
(Figure 2) show significant differences with 33%, 55%, 77%, or 
100% when compared to 10% repeated supplementations at gen-
eration 20 (10% vs 33%, p-value = 1.64E-05; 10% vs 55%, p-value 
= 1.64E-05; 10% vs 77%, p-value = 4.91E-06; or 10% vs 100%, p-
value = 6.00E-06) and 30 (10% vs 33%, p-value = 6.18E-05; 10% vs 
55%, p-value = 6.18E-05; 10% vs 77%, p-value = 2.35E-04; or 10% 
vs 100%, p-value = 2.34E-05). However, supplementations to ab-
surdity (300%, 500%, 700%, or 900% supplementation ratios) are 
not statistically significant between each other (p-value ≥ 0.103) 
(Figure 3). This suggests that increasing supplementation ratios 
can increase genetic variability up to a certain point. These results 
also show the effectiveness of multiple supplementation method 
as previously suggested [15]. Repeated supplementations with 
sufficient diversity may reduce the chances for inbreeding [5,28]. 
However, our results also suggest that repeated supplementations 
are not likely to eliminate potential inbreeding. Hence, the effects of 
larger supplementation ratios and multiple generations need to be 
investigated as there needs to more research on long term effects of 
supplementations [12,29].
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Figure 1: Single versus multiple 10% supplementation. Four supplementation schemes were evaluated – (a) single supplementation at 
generation 5 (G5); (b) repeated supplementations at generations 5, and 10 (G5,G10); (c) repeated supplementations at generations 5, 

10, and 15 (G5,G10,G15); and (d) repeated supplementations at generations 5, 10, 15, and 20 (G5,G10,G15,G20).

Figure 2: Repeated supplementations at generations 5, 10, 15, and 20; with supplementation ratio from 10% to 100%.
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Figure 3: Repeated supplementations at generations 5, 10, 15, and 20; with supplementation ratio from 100% to 900%.

Conclusion
This study suggests that repeated supplementations with high 

supplementation ratio (up to 100% supplementation) have the po-
tential to increase genetic diversity but not eliminate inbreeding in 
captive population.
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