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Agriculture has to provide increased yields to feed the growing 
global population, which is expected to reach 9.7 billion by 2050 
[1]. In 2010-2012, 12.5% of the world population, about 7.6 bil-
lion population, was estimated to be malnourished [2]. Agricul-
tural yields are limited and made unpredictable by abiotic and 
biotic stresses. As example, fungal pathogens of wheat alone are 
estimated to cause yield losses of up to 29%, and other pathogens 
and various abiotic threats, such as flooding, drought and soil fer-
tility, are causing further reduction of productions [3]. Moreover, 
climate change is predicted to increase the frequency and sever-
ity of these threats [4]. Thus, agro-ecological challenges of the 21st 
century should be the minimization of the threat of pathogens and 
abiotic stresses and the reduction of the negative environmental 
impacts on agriculture through a sustainable intensification of 
management under fluctuating and unpredictable conditions [5]. 
The challenge to sustainable intensified agriculture practices is the 
deep exploitation of the plant microbiome both in the endosphere 
and rhizosphere in order to define strategies for the application of 
endophytes, symbionts and other beneficial microorganisms to ag-
ricultural systems [6]. However, an overlooked aspect is the nega-
tive impact of agrotechnical interventions, such as intensive tillage 
and chemical treatments, on plant microbiome. 

Microbiome, similarly to gut microbiome, is now known as the 
‘second genome’ of plants that strongly influences plant health, 
nutrient uptakes as well as growth and development [7]. A better 
understanding of the plant microbiome in term of genetic diver-
sity and functionality, allowed by the use of next-generation omics 
technologies, is expected to contribute to the development of a 
‘personalized agriculture’. For plants, it was suggested that plant 
growth promoting bacteria (PGPB) act as probiotics for roots, and 
substrates or additives, such as soil amendments, act as prebiotics 

for plants [8,9]. Microbial communities can live inside plants (en-
dosphere) and/or externally to roots (rhizosphere and mycorhizo-
sphere). Inside and around the roots, bacteria and fungi are shaped 
by root exudates, soil pH, salinity, soil organic matter, and moisture, 
determining their composition, structure and functions [10-12]. 
The endophytic microbial communities confer multiple beneficial 
effects to the host plant, promoting plant growth, producing phy-
tohormones, and controlling plant pathogens, by the induction of 
systemic resistance or siderophore production [13]. The beneficial 
microbes living in the rhizosphere, include a high numbers of di-
verse plant growth promoting microbial communities, arbuscular 
mycorrhizal fungi (AMF, Glomeromycota) and bacteria, such as 
Acidobacteria, Bacteroidetes, Proteobacteria, Planctomycetes, and 
Actinobacteria [14]. Moreover, diverse bacterial communities live 
in the mycorrhizosphere, i.e., associated with mycorrhizal roots, 
spores, sporocarps and extraradical hyphae. Moreover, some rhizo-
spheric and mycorrhizospheric bacteria are able to colonise plant 
roots, thus becoming endophytes [15]. 

Soil inoculants composed by biofertilizers and biostimulants 
have been shown to be beneficial for boosting plant productivity 
and protection against pathogens generally in microcosm experi-
ments. However, the tested soil inoculants include individual or a 
limited number of known microbial strains isolated from few plant 
species. These strains have been originated from soil under inten-
sive agricultural managements and thus we can question whether 
the services they provide are effective only in these specific condi-
tions. In this context, Xia., et al. [16] investigated the effect of agri-
cultural practices, such as organic and conventional management, 
and found that organic agriculture increased endophyte presence 
and diversity in 32 crops, including corn, tomato, melon, and pep-
per. Following their reintroduction to tomato plants, 61% and 64% 
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of the endophytes isolated from organic agriculture promoted 
tomato growth and biomass accumulation. Moreover, overall, the 
strains studied in literature have not been selected for secondary 
services, such as the production of metabolites beneficial for hu-
man health, and thus plant microbiome diversity is under-exploit-
ed for these functions. However, recent researches have addressed 
the possibility of manipulating the communication between plants 
and their microbiota to modify the abundance and diversity of mi-
croorganisms of the endosphere and rhizosphere [17,18]. 

Thus, further studied should start from the hypothesis that a 
high inter- and intraspecific variability in genetic diversity, infec-
tivity and effectiveness occur in plant microbiome. Further stud-
ies should thus isolate and propagate endophytic bacteria through 
single-strain cultures and AMF through single-spore cultures, both 
collected from rhizospheric soil and/or roots of plants occurring 
in secondary successions and conventional agricultural systems 
from vulnerable areas, such the Mediterranean ones. There is a 
need of testing the hypothesis that the abandonment of agricul-
ture (fertilization and ploughing) that occurred in the secondary 
successions changes soil parameters and consequently promotes 
microbial community and strains with high infectivity and effec-
tiveness, in term of promotion of crop productivity and resilience 
to biotic and abiotic stress. The detection of the soil-plant and/or 
abiotic drivers positively affecting the infectivity and effectiveness 
of plant microbiome need to guide new programmes of selection 
of efficient strains dedicated to specific crops/environments or the 
management of crops in order to shape the plant microbiota with 
the prospect to promote green agriculture.
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